Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2135-2146, 2017
Sparse probabilistic principal component analysis model for plant-wide process monitoring
In the industrial monitoring process, probabilistic principal component analysis (PPCA) is a popular algorithm for reducing the dimension. However, the principal components (PCs) are not easy to interpret and its preserved number cannot be determined automatically. In this paper, we propose a sparse PPCA (SPPCA) to improve the interpretability by adding a prior and introducing sparsification to the loading matrix of PPCA. An expectation-maximization (EM) algorithm is used to obtain the parameters of the probabilistic formulation, and the dimensionality of the latent variable space can be automatically determined during the iterative process. With the sparse representation, a process monitoring strategy is then developed with the construction of several partial PPCA models. Case studies of SPPCA to a numerical case and Tennessee Eastman (TE) benchmark process demonstrate its feasibility and efficiency.
[References]
  1. Chiang LH, Russell EL, Braatz RD, Meas. Sci. Technol., 12, 1745, 2001
  2. Qin SJ, J. Chemometr., 17, 4808, 2003
  3. Zhang YW, Qin SJ, AIChE J., 54(12), 3207, 2008
  4. Wang X, Kruger U, Irwin GW, McCullough G, McDowell N, IEEE Trans. Control Syst. Technol., 16, 122, 2008
  5. Zhang Y, Ma C, Chem. Eng. Sci., 6+6, 64, 2011
  6. Jiang Q, Yan X, Korean J. Chem. Eng., 31(11), 1935, 2014
  7. Tipping ME. Bishop CM, J. R. Stat. Soc. Ser. B Statistical Methodol, 61, 611, 1999
  8. Kim D, Lee IB, Chemom. Intell. Lab. Syst., 67, 109, 2003
  9. Choi SW, Park JH, Lee IB, Comput. Chem. Eng., 28(8), 1377, 2004
  10. Chen T, Sun Y, Control Eng. Practice, 17, 469, 2009
  11. Ge ZQ, Song ZH, AIChE J., 56(11), 2838, 2010
  12. Vines SK, J. R. Stat. Soc. Ser. C-Applied Stat., 49, 441, 2000
  13. Jolliffe IT, Trendafilov NT, Uddin M, J. Comput. Graph. Stat., 12, 531, 2003
  14. Zou H, Hastie T, Tibshirani R, J. Comput. Graph. Stat., 15, 265, 2006
  15. Xie L, Lin XZ, Zeng JS, Ind. Eng. Chem. Res., 52(49), 17475, 2013
  16. Tipping ME, J. Mach. Learn. Res., 1, 211, 2001
  17. Sigg CD, Buhmann JM, Proc. 25th Int. Conf. Mach. Learn. - ICML ’08., 960 (2008).
  18. Cawley G, Talbot N, Girolami M, NIPS, 19, 209, 2007
  19. Archambeau C, Bach FR, NIPS, 1 (2008).
  20. Guan Y, Dy JG, AISTATS, 5, 185, 2009
  21. Koyejo O, Ghosh J, Khanna R, Poldrack RA, NIPS, 676 (2014).
  22. Khanna R, Ghosh J, Poldrack R, Koyejo OO, AISTATS, 38, 453, 2015
  23. Latouche P, Mattei PA, Bouveyron C, Chiquet J, J. Multivariate Anal., 146, 177, 2014
  24. Bouveyron C, Latouche P, Mattei PA, Bayesian variable selection for globally sparse probabilistic PCA, Technical Report, HAL- 01310409, Universite Paris Descartes (2016).
  25. Qin SJ, Valle S, Piovoso MJ, J. Chemometr., 15, 715, 2001
  26. Choi SW, Lee IB, J. Process Control, 15(3), 295, 2005
  27. Zhang Y, Zhou H, Qin SJ, Chai T, IEEE T. Ind. Inform., 6, 3, 2010
  28. Wang B, Jiang Q, Yan X, Korean J. Chem. Eng., 31(6), 930, 2014
  29. Bishop CM, NIPS, 11, 382, 1998
  30. Bishop CM, Springer-Verlag, New York (2006).
  31. Martin EB, Morris AJ, J. Process Control, 6(6), 349, 1996
  32. Chen Q, Wynne RJ, Goulding P, Sandoz D, Control Eng. Practice, 8, 531, 2000
  33. Chen Q, Kruger U, Leung ATY, Control Eng. Practice, 12, 267, 2004
  34. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245, 1993
  35. Grbovic M, Li WC, Xu P, Usadi AK, Song LM, Vucetic S, J. Process Control, 22(4), 738, 2012
  36. Ge ZQ, Song ZH, Ind. Eng. Chem. Res., 52(5), 1947, 2013