Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1882-1888, 2017
Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal
The effects of Ca/S molar ratio, catalyst type, catalyst dosage, temperature on desulfurization and denitrification efficiency were investigated in the coal-powder combustion with corn cobs as biomass. The thermal characteristics of Shanxi coal and corn cob blends with V-TiO2 were evaluated by thermogravimetric analyzer. The catalytic mechanisms of V-TiO2 on combustion, desulfurization and denitrification were discussed, suggesting that the mechanisms are in good agreement with the experimental data. The results show that the control parameters of the ideal desulfurization and denitrification efficiency should follow that the dosage of V-TiO2 catalyst is 8% with a Ca/S ratio of 2.3 at a treatment temperature 850 °C. Meanwhile, the combustion efficiency could be effectively improved with the mixture of corn cob and V-TiO2. The thermal characteristics of coal char and corn cob char blends with V-TiO2 were evaluated using thermogravimetric analysis and derivative thermogravimetry methods to discuss the heterogeneous NO reduction mechanisms. The results show that the biomass chars were more active than coal chars in reducing NO, and the specific surface area of the chars was increased with V-TiO2, which indicates that V-TiO2 exhibits significant influence on catalytic combustion, desulfurization and denitrification.
[References]
  1. Zhang XY, Hao F, Chen HS, Fang DN, J. Electrochem. Soc., 161(14), A2243, 2014
  2. Yang L, Zhang XY, Li Y, Hao F, Chen HS, Yang M, Fang DN, Electrochim. Acta, 155, 272, 2015
  3. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F, Bioresour. Technol., 101(14), 5601, 2010
  4. Lester E, Gong M, Thompson A, J. Anal. Appl. Pyrolysis, 80, 111, 2007
  5. Sahu SG, Sarkar P, Chakraborty N, Adak AK, Fuel Process. Technol., 91(3), 369, 2010
  6. Wan HP, Chang YH, Chien WC, Lee HT, Huang CC, Fuel, 87(6), 761, 2008
  7. Kazagic A, Smajevic I, Energy, 32(10), 2006, 2007
  8. Ahn S, Choi G, Kim D, Biomass Bioenerg., 71, 144, 2014
  9. Liu X, Chen MQ, Wei YH, Fuel, 143, 577, 2015
  10. Riaza J, Alvarez L, Gil MV, Pevida C, Pis JJ, Rubiera F, Energy Procedia, 37, 1405, 2013
  11. Daood SS, Javed MT, Gibbs BM, Nimmo W, Fuel, 105, 283, 2013
  12. Xie JJ, Yang XM, Zhang L, Ding TL, Song WL, Lin WG, J. Environ. Sci., 19, 109, 2007
  13. Liu H, Qiu JR, Dong XW, J. Eng. Therm. Energy Power, 17, 451, 2002
  14. Daood SS, Ord G, Wilkinson T, Nimmo W, Fuel, 134, 293, 2014
  15. Yuan Y, Zhang JY, Li HL, Li Y, Zhao YC, Zheng CG, Chem. Eng. J., 192, 21, 2012
  16. Zhao Y, Han J, Shao Y, Feng Y, Environ. Technol., 14, 1555, 2009
  17. Wang SQ, Zhao Y, Li DD, J. Eng. Therm. Energy Power, 23, 50, 2008
  18. Wang SQ, Zhao Y, Tan Q, Xu PY, Environ. Sci., 29, 518, 2008
  19. Wang SQ, Kong HY, J. N. China Electr. Power Univ., 3, 79, 2008
  20. Zhang X, Yang L, Hao F, Chen H, Yang M, Fang D, Nanomaterials, 5(4), 1985, 2015
  21. Li L, Liu CY, Liu Y, Mater. Chem. Phys., 113(2-3), 551, 2009
  22. Ding SW, Li L, Xu XW, Wu L, J. N. China Electr. Power Univ., 6, 88, 2007
  23. Zhang L, Zhang SH, Wang XH, Power Syst. Eng., 23, 127, 2007
  24. Wang SQ, Su CR, Zhao Y, J. N. China Electr. Power Univ., 5, 89, 2011
  25. Dong L, Gao S, Song W, Xu G, Fuel Process. Technol., 88, 707, 2007
  26. Liu JZ, Feng ZG, Zhang BS, Zhou JH, Cen KF, J. Power Eng., 26, 121, 2006
  27. Zheng G, Kozinski JA, Fuel, 79(2), 181, 2000
  28. Zhang J, Li J, Hu Z, Yin S, Zuo H, Su B, Acta Energy Solaris Sinica, 10, 1847, 2013
  29. Wang SQ, Zhao Y, Zhang PP, Liu YD, Chem. Eng. Res. Des., 89(7A), 1061, 2011
  30. Zhao Y, Wang SQ, Shen YM, Lu XJ, Energy, 56, 25, 2013
  31. Dong L, Gao S, Song W, Xu G, Fuel Process. Technol., 88, 707, 2007
  32. Zhong BJ, Shi WW, Fu WB, Fuel Process. Technol., 79(2), 93, 2002