Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1563-1575, 2017
Experimental and numerical predictions of ash particle erosion in SCR monolithic catalysts for coal-fired utility boilers
Erosion by particles in monolithic selective catalyst reduction (SCR) processes can reduce the operational life of a catalyst and threaten the performance of the SCR system. We present an integrated approach implemented in two stages to predict the erosion condition of SCR processes. First, a 3D computational fluid dynamics (CFD) model was established for a full-sized SCR reactor to obtain information on the flue gas and ash particles at the entrance of the catalyst layer. Second, the detailed inner catalyst structure layers were simulated using MATLAB and a catalyst erosion model was developed, according to the initial and boundary conditions obtained using the CFD models. Relative cold state tests and erosion measurements were conducted to validate the simulation results. The model was applied to investigate the relationship between the reactor installment, the gas-solid flow field and the catalyst erosion. Moreover, a series of retrofit schemes were implemented to confirm that this method can be used in engineering applications.
[References]
  1. Forzatti P, Appl. Catal. A: Gen., 222(1-2), 221, 2001
  2. Shah KV, Cieplik MK, Betrand CI, van de Kamp WL, Vuthaluru HB, Fuel Process. Technol., 91(5), 531, 2010
  3. Benson SA, Laumb JD, Crocker CR, Pavlish JH, Fuel Process. Technol., 86(5), 577, 2005
  4. Strege JR, Zygarlicke CJ, Folkedahl BC, McCollor DP, Fuel, 87(7), 1341, 2008
  5. Bartholomew CH, Appl. Catal. A: Gen., 212, 17, 2001
  6. Lei ZG, Wen CP, Zhang J, Chen BH, Ind. Eng. Chem. Res., 50(10), 5942, 2011
  7. Schwammle T, Bertsche F, Hartung A, Brandenstein J, Heidel B, Scheffknecht G, Chem. Eng. J., 222, 274, 2013
  8. Yao J, Zhong ZP, Zhu L, Chem. Eng. Technol., 38(2), 283, 2015
  9. Yang J, Ma HT, Yamamoto Y, Yu J, Xu GW, Zhang ZG, Suzuki Y, Chem. Eng. J., 230, 513, 2013
  10. Gandhi MB, Vuthaluru R, Vuthaluru H, French D, Shah K, Appl. Therm. Eng., 42, 90, 2012
  11. Pereira GC, de Souza FJ, Martins DAD, Powder Technol., 261, 105, 2014
  12. Schade KP, Erdmann HJ, Hadrich T, Schneider H, Frank T, Bernert K, Powder Technol., 125(2-3), 242, 2002
  13. Oka YI, Okamura K, Yoshida T, Wear, 259, 95, 2005
  14. Oka YI, Yoshid T, Wear, 259, 102, 2005
  15. Nagarajan R, Ambedkar B, Gowrisankar S, Somasundaram S, Wear, 267, 122, 2009
  16. Lin Z, Ruan XD, Zhu ZC, Fu X, Powder Technol., 254, 150, 2014
  17. Mansouri, Arabnejad h, Shirazi SA, McLaury BS, Wear, 332, 1090, 2015
  18. Budinski KG, Wear, 203, 302, 1997
  19. Gan L, Lei S, Yu J, Ma H, Yamamoto Y, Suzuki Y, Zhang Z, Front. Environ. Sci. Eng., 9, 979, 2015
  20. Parsi M, Najmi K, Najafifard F, Hassani S, McLaury BS, Shirazi SA, J. Nat. Gas Sci. Eng., 21, 850, 2014
  21. Chae HJ, Choo ST, Choi H, Nam IS, Yang HS, Song SL, Ind. Eng. Chem. Res., 39(5), 1159, 2000
  22. Cho JM, Choi JW, Hong SH, Kim KC, Na JH, Lee JY, Korean J. Chem. Eng., 23(1), 43, 2006
  23. Xu YY, Zhang Y, Wang JC, Yuan JQ, Comput. Chem. Eng., 49, 50, 2013
  24. Xu YY, Zhang Y, Liu FN, Shi WF, Yuan JQ, Comput. Chem. Eng., 69, 119, 2014
  25. Park HC, Choi HS, Choi YS, J. Comput. Fluids Eng., 16, 66, 2011
  26. Launder BE, Spalding DB, Comput. Meth. Appl. Mech. Eng., 3, 269, 1974
  27. Li A, Ahmadi G, Aerosol Sci. Technol., 16, 209, 1992
  28. Sommerfeld M, Huber N, Int. J. Multiph. Flow, 25(6), 1457, 1999
  29. Kuan B, Rea N, Schwarz MP, Powder Technol., 179(1-2), 65, 2007
  30. Mezhericher M, Brosh T, Levy A, Part. Sci. Technol., 29(2), 197, 2011