Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1541-1553, 2017
Three-dimensional CFD study of conical spouted beds containing heavy particles: Design parameters
The flow behavior of conical spouted beds containing heavy particles that occurs in chemical vapor deposition (CVD) was investigated using the computational fluid dynamics (CFD) approach. A fully Eulerian description of solid and gas phases flows in 3D was used in these simulations. The hydrodynamics parameters including particle velocity, solid flux, and solid volume fraction profiles at different bed levels were evaluated, and the overall behavior of solid particles in the beds was studied. The results showed close agreement with the corresponding experimental data. The effects of cone angle, static bed height, and cone bottom diameter on the hydrodynamic behavior of heavy particles were analyzed and the results were presented. In addition, the effects of flat wall of semi-conical spouted bed (halfcolumn) on the CFD results and performance of the spouted bed were investigated. The hydrodynamic results for the full bed were quite different from those for the half bed geometries. It was also found that the conical spouted bed with the angle of 45° leads to the roughly stable spouting compared to the 30° angle bed. The CFD model also showed that the conical-cylindrical spouted beds operating with heavy particles has the potential for periodic occurrence of choking in the spout zone.
[References]
  1. Gishler PE, Can. J. Chem. Eng., 61, 267, 1983
  2. Kmiec A, Szafran RG, Kinetics of Drying of Microspherical Particles in a Spouted Bed Dryer with a Draft Tube, In Proceedings of the 12th International Drying Symposium (IDS 2000), Elsevier Science B.V.: Amsterdam (2000).
  3. Harvie DJE, Langrish TAG, Fletcher DFA, Trans. Inst. Chem. Eng., 80, 163, 2002
  4. Ichikawa H, Arimoto M, Fukumori Y, Powder Technol., 130(1-3), 189, 2003
  5. Al-Mayman SI, Al-Zahrani SM, Fuel Process. Technol., 80(2), 169, 2003
  6. Khoshnoodi M, Weinberg FJ, Combust. Flame, 33, 11, 1978
  7. Kersten SRA, Prins W, van der Drift B, van Swaaij WPM, Chem. Eng. Sci., 58(3-6), 725, 2003
  8. Luo CH, Aoki K, Uemiya S, Kojima T, Fuel Process. Technol., 55(3), 193, 1998
  9. Lopez G, Alvarez J, Amutio M, Arregi A, Bilbao J, Olazar M, Energy, 107, 493, 2016
  10. Kulah G, Sari S, Koksal M, Ind. Eng. Chem. Res., 55, 3131, 2016
  11. Liu XJ, Zhong WQ, Jiang XF, Jin BS, AIChE J., 61(1), 58, 2015
  12. Qian L, Lu Y, Zhong WQ, Chen X, Ren B, Jin BS, Can. J. Chem. Eng., 91(11), 1793, 2013
  13. Sutkar VS, Deen NG, Patil AV, Peters EAJF, Kuipers JAM, Salikov V, Antonyuk S, Heinrich S, AIChE J., 61(4), 1146, 2015
  14. Chen X, Ren B, Chen Y, Zhong WQ, Chen DL, Lu Y, Jin BS, Can. J. Chem. Eng., 91(11), 1762, 2013
  15. Saldarriaga JF, Aguado R, Altzibar H, Atxutegi A, Bilbao J, Olazar M, J. Taiwan Inst. Chem. Eng., 60, 509, 2016
  16. Azizi S, Hosseini SH, Moraveji M, Ahmadi G, Particuology, 8, 415, 2010
  17. Fattahi M, Hosseini SH, Ahmadi G, Appl. Therm. Eng., 105, 385, 2016
  18. Hosseini SH, Ahmadi G, Olazar M, Powder Technol., 246, 303, 2013
  19. Hosseini SH, Ahmadi G, Olazar M, J. Taiwan Inst. Chem. Eng., 45, 2140, 2014
  20. Hosseini SH, Fattahi M, Ahmadi G, J. Taiwan Inst. Chem. Eng., 58, 107, 2016
  21. Hosseini SH, Prog. Comput. Fluid Dyn., 16, 78, 2016
  22. Hosseini SH, Ahmadi G, Razavi BS, Zhong W, Energy Fuels, 24, 6086, 2010
  23. Hosseini SH, Fattahi M, Ahmadi G, Powder Technol., 279, 301, 2015
  24. Moradi S, Yeganeh A, Salimi M, Appl. Math. Model., 37, 1851, 2013
  25. San Jose MJ, Olazar M, Alvarez S, Morales A, Bilbao J, Ind. Eng. Chem. Res., 44(1), 193, 2005
  26. San Jose MJ, Alvarez S, Morales A, Olazar M, Bilbao J, Chem. Eng. Res. Des., 84(A6), 487, 2006
  27. Zhou JD, Bruns DD, Can. J. Chem. Eng., 90(3), 558, 2012
  28. Pannala S, Daw CS, Finney CEA, Boyalakuntla D, Syamlal M, O’Brien TJ, Chem. Vapor Depos., 13, 481, 2007
  29. Lule SS, Colak U, Koksal M, Kulah G, Chem. Vap. Depos., 21, 1, 2015
  30. Setarehshenas N, Hosseini SH, Nasr Esfahany M, Ahmadi G, J. Taiwan Inst. Chem. Eng., 64, 146, 2016
  31. Schaeffer DG, J. Differ. Equat., 66, 19, 1987
  32. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N, J. Fluid Mech., 140, 223, 1984
  33. Huilin L, Gidaspow D, Bouillard J, Wentie L, Chem. Eng. J., 95(1-3), 1, 2003
  34. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  35. Hossein Hosseini S, Rahimi R, Zivdar M, Samimi A, Korean J. Chem. Eng., 26(5), 1405, 2009
  36. Bettega R, da Rosa CA, Correa RG, Freire JT, Ind. Eng. Chem. Res., 48(24), 11181, 2009
  37. Behjat Y, Shahhosseini S, Ahmadi Marvast M, Int. Commun. Heat Mass Transf., 37, 935, 2010
  38. San Jose MJ, Olazar M, Alvarez S, Bilbao J, Ind. Eng. Chem. Res., 37(6), 2553, 1998
  39. Du W, Bao XJ, Xu J, Wei WS, Chem. Eng. Sci., 61(5), 1401, 2006
  40. Hosseini SH, Karami M, Olazar M, Safabakhsh R, Rahmati M, Ind. Eng. Chem. Res., 53(32), 12639, 2014
  41. Mathur KB, Gishler PE, AIChE J., 1, 157, 1955
  42. Olazar M, San Jose MJ, Aguayo AT, Arandes JM, Bilbao J, Chem. Eng. J. Biochem. Eng., 55, 27, 1994
  43. Olazar M, San Jose MJ, Alvarez S, Morales A, Bilbao J, Ind. Eng. Chem. Res., 37(11), 4520, 1998
  44. Sobieski W, Dry Technol., 26, 1438, 2008
  45. Bettega R, Correa RG, Freire JT, Study of the Scale-Up Relations for Spouted Beds using CFD, 19th Int. Cong. Mech. Eng., Brasilia DF 5-9 (2007).
  46. He YL, Hydrodynamic and Scale-up Studies of Spouted Beds, University of British Columbia, Ph.D. Thesis (1995).
  47. Lu HL, He YR, Liu WT, Ding JM, Gidaspow D, Bouillard J, Chem. Eng. Sci., 59(4), 865, 2004
  48. Sari S, Polat A, Zaglanmis D, Kulah G, Koksal M, Hydrodynamics of Conical Spouted Beds with High Density Particles, Proceedings of 10th International Conference on Circulating Fluidized Beds and Fluidization Technology, Sun River, Idaho, U.S.A. (2011).
  49. Sari S, Kulah G, Koksal M, Exp. Therm. Fluid Sci., 40, 132, 2012
  50. Sau DC, Biswal KC, Appl. Math. Model., 35, 2265, 2011
  51. Sun LY, Xu WG, Liu GD, Sun D, Lu HL, Tang YJ, Li D, Chem. Eng. Sci., 84, 170, 2012