Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1504-1508, 2017
Highly stable inverted organic photovoltaic cells with a V2O5 hole transport layer
The stability of the hole transport layer (HTL) in inverted organic photovoltaic cells is of great interest because the conventional HTL material, PEDOT:PSS, shows limited stability. In this work, solution processed vanadium pentoxide (V2O5) was adopted as the HTL, and the effect of annealing on the properties of the HTL was investigated. The inverted organic photovoltaic cell fabricated with V2O5 and annealed for 5min at 165 °C showed the highest power conversion efficiency (PCE) of 3.92%, which is an enhancement of 16% relative to the cell with PEDOT: PSS (PCE=3.36%). The cell with V2O5 was also found to be more stable than the PEDOT: PSS cell, in which a 51% decrease in PCE was observed after 96 h. In contrast, over the same interval, the V2O5 device maintained a PCE 85% of the original value.
[References]
  1. Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880, 2016
  2. Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678, 2016
  3. Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32(2), 261, 2015
  4. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, Proc. Nat. Ac. Sci., 105, 2783, 2008
  5. Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095, 2014
  6. You H, Dai Y, Zhang Z, Ma D, Appl. Phys., 101, 026105, 2007
  7. Li G, Chu CW, Shrotriya V, Huang J, Yang Y, Appl. Phys. Lett., 88, 253503, 2006
  8. Tao C, Ruan S, Zhang X, Xie G, Shen L, Kong X, Dong W, Liu C, Chen W, Appl. Phys. Lett., 93, 193307, 2008
  9. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL, Appl. Phys. Lett., 93, 221107, 2008
  10. Zhao DW, Liu P, Sun XW, Tan ST, Ke L, Kyaw AKK, Appl. Phys. Lett., 92, 173303, 2008
  11. Liao HH, Chen LM, Xu Z, Li G, Yang Y, Appl. Phys. Lett., 92, 173303, 2008
  12. Takanezawa K, Tajima K, Hashimoto K, Appl. Phys. Lett., 93, 063308, 2008
  13. Yu BY, Tsai A, Tsai SP, Wong KT, Yang Y, Chu1 CW, Shyue JJ, Nanotechnology, 19, 255202, 2008
  14. Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lutzenkirchen-Hecht D, Frahm R, Riedl T, Adv. Funct. Mater., 21(24), 4776, 2011
  15. Kim Y, Ballantyne AM, Nelson J, Bradley DDC, Organic Electronics, 10, 205, 2009
  16. Huang JS, Chou CY, Liu MY, Tsai KH, Lin WH, Lin CF, Organic Electronics, 10, 1060, 2009
  17. Zafar M, Yun JY, Kim DH, Appl. Surf. Sci., 398, 9, 2017
  18. Cho HS, Shin N, Kim K, Kim B, Kim DH, Synth. Met., 207, 31, 2015
  19. Zilberberg K, Trost S, Schmidt H, Riedl T, Adv. Eng. Mater., 1, 377, 2011
  20. Escobar GT, Pampel T, Caicedo JM, Cantu ML, Energy Environ. Sci., 6, 3088, 2013
  21. Cho SP, Yeo JS, Kim DY, Na SI, Kim SS, Sol. Energy Mater. Sol. Cells, 132, 196, 2015
  22. Pan J, Li P, Cai L, Hu Y, Zhang YJ, Sol. Energy Mater. Sol. Cells, 144, 616, 2016
  23. Arbab EAA, Mola GT, Appl. Phys. A-Mater. Sci. Process., 122, 405, 2016