Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1495-1499, 2017
Fabrication of NOA microfluidic devices based on sequential replica molding
Polydimethylsiloxane (PDMS) microfluidic devices, though they are commonly utilized in microfluidic applications, have several limitations, such as short-term modified surface condition, swelling in the presence of organic solvents, and deformation under high pressure or when built with low aspect ratios. To resolve the restrictions, Norland Optical Adhesive (NOA) has been introduced as an excellent alternative for PDMS. Here, we present a practical protocol for the fabrication of NOA microfluidic devices via a step-wise molding process. Through the indirect molding of NOA on wafers, the damage to the wafers can be significantly reduced. Furthermore, because we use positivepatterned wafers, which are commonly used to fabricate PDMS devices, no additional fabrication of the wafer is required. This simple strategy thus avoids damage to the wafers and simultaneously allows for the mass production of NOA devices without deformation. We also test the performance of NOA devices in oil-in-water droplet production and in a microfluidic process using organic solvents.
[References]
  1. McDonald JC, Whitesides GM, Acc. Chem. Res., 35, 491, 2002
  2. Psaltis D, Quake SR, Yang C, Nature, 442, 381, 2006
  3. Hu Y, Mackenzie JD, J. Mater. Sci., 27, 4415, 1992
  4. Nam SW, Van Noort D, Yang Y, Park S, Lab Chip, 7, 638, 2007
  5. Lee NY, Yang YS, Kim YS, Park SS, Bull. Korean Chem. Soc., 27, 479, 2006
  6. Gawron AJ, Martin RS, Lunte SM, Electrophoresis, 22(2), 242, 2001
  7. Lee D, Ahn KH, Korea-Aust. Rheol. J., 27(2), 65, 2015
  8. Hong JS, Korea-Aust. Rheol. J., 28(2), 77, 2016
  9. Dziubinski M, Korea-Aust. Rheol. J., 27(1), 11, 2015
  10. Choi JW, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Ahn CH, Lab Chip, 2, 27, 2002
  11. Rossier J, Reymond F, Michel PE, Electrophoresis, 23(6), 858, 2002
  12. Malic L, Brassard D, Veres T, Tabrizian M, Lab Chip, 10, 418, 2010
  13. Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R, Adv. Mater., 18(2), 165, 2006
  14. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD, Nat. Mater., 6(11), 908, 2007
  15. Andersson H, Van Den Berg A, Lab Chip, 4, 98, 2004
  16. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH, Nature, 442, 412, 2006
  17. Seo M, Gorelikov I, Williams R, Matsuura N, Langmuir, 26(17), 13855, 2010
  18. Kim HU, Choi DG, Roh YH, Shim MS, Bong KW, Small, 12, 3463, 2016
  19. Roh YH, Sim SJ, Cho IJ, Choi J, Choi N, Bong KW, Analyst, 141, 4578, 2016
  20. Blanco FJ, Agirregabiria M, Berganzo J, Mayora K, Elizalde J, Calle A, Lechuga LM, J. Micromech. Microeng., 16, 1006, 2006
  21. Hong KS, Wang J, Sharonov A, Chandra D, Aizenberg J, Yang S, J. Micromech. Micoreng., 16, 1660, 2006
  22. Lee JL, Park C, Whitesides GM, Anal. Chem., 75, 6544, 2003
  23. Morra M, Occhiello E, Marola E, Garbassi F, Humphrey P, Johnson D, J. Colloid Interface Sci., 137, 11, 1990
  24. Fritz JL, Owen MJ, J. Adhes., 54, 33, 1995
  25. Gervais T, El-Ali J, Gunther A, Jensen KF, Lab Chip, 6, 500, 2006
  26. Hardy BS, Uechi K, Zhen J, Kavehpour HP, Lab Chip, 9, 935, 2009
  27. Delamarche E, Schmid H, Michel B, Biebuyck H, Adv. Mater., 9(9), 741, 1997
  28. Carlborg CF, Haraldsson T, Oberg K, Malkoch M, van der Wijngaart W, Lab Chip, 11, 3136, 2011
  29. Hung LH, Lin R, Lee AP, Lab Chip, 8, 983, 2008
  30. Ogonzyk D, Wegrzyn J, Jankowski P, dabrowski B, Garstecki P, Lab Chip, 10, 1324
  31. Chen J, Wabuyele M, Chen H, Patterson D, Hupert M, Shadpour H, Soper SA, Anal. Chem., 77, 658, 2005
  32. Ren K, Dai W, Zhou J, Su J, Wu H, Proc. Natl. Acad. Sci., 108, 8162, 2011
  33. Kim P, Jeong HE, Khademhosseini A, Suh KY, Lab Chip, 6, 1432, 2006
  34. Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Salmon JB, Lab Chip, 6, 494, 2006
  35. Min KI, Lee TH, Park CP, Wu ZY, Girault HH, Ryu I, Kim DP, Angew. Chem.-Int. Edit., 49, 7063, 2010
  36. Park MC, Hur JY, Kwon KW, Park SH, Suh KY, Lab Chip, 6, 988, 2006
  37. Jeong HE, Suh KY, Lab Chip, 8, 1787, 2008
  38. Cygan ZT, Cabral JT, Beers KL, Amis EJ, Langmuir, 21(8), 3629, 2005
  39. Wagli P, Homsy A, de Rooij NF, Sens. Actuators B-Chem., 156, 994, 2011
  40. Sollier E, Murray C, Maoddi P, Di Carlo D, Lab Chip, 11, 3752, 2011
  41. Bong KW, Xu J, Kim JH, Chapin SC, Strano MS, Gleason KK, Doyle PS, Nat. Commun., 3, 805, 2012
  42. Bartolo D, Degre G, Nghe P, Studer V, Lab Chip, 8, 274, 2008
  43. Khanafer K, Duprey A, Schlicht M, Berguer R, Biomed. Microdevices, 11, 503, 2009
  44. Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, Nat. Commun., 5, 4120, 2014
  45. Bhushan B, Hansford D, Lee KK, J. Vac. Sci. Technol. A, 24(4), 1197, 2006
  46. Mark JE, Ning YP, Polym. Eng. Sci., 25, 824, 1985
  47. Toepke, Michael W. Beebe DJ, Lab Chip, 6, 1484, 2006
  48. Zhang H, Cloud A, In Proceedings of 2006 SAMPE Fall Technical Conference (2006).
  49. Pan J, Chen H, Zhang D, Zhang X, Yuan L, Aobo L, J. Micromech. Microeng., 23, 9, 2013
  50. Dreyfus R, Tabeling P, Willaime H, Phys. Rev. Lett., 90, 144505, 2003