Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1483-1489, 2017
Effect of electrolyte composition on the morphological structures of dendritic copper powders prepared by a spontaneous galvanic displacement reaction
Dendritic copper powders are highly desirable in many applications, including electromagnetic interference shielding and conductive pastes, because of low cost and high conductivity. We prepared dendritic copper powders using the galvanic displacement reaction between the Al and Cu-ions in aqueous solution. This method is very simple and spontaneous at room temperature. During the process, the morphology of the copper powders is strongly affected by several variables, such as the displacement reaction rate and the amount of hydrogen evolution due to the reduction of proton. The effect of the different composition of electrolytes to morphological changes of copper powders was investigated in this study. In addition, the effects of concentration of chlorine ion, pH, termination time, and additives were monitored, which resulted in different morphology. Considering different applications, such as sensors, catalysts, and conductive pastes, the controllability of the morphology of dendritic copper powders plays an important role in achieving high performance in desired applications.
[References]
  1. Kim CK, Lee GJ, Lee MK, Rhee CK, Powder Technol., 263, 1, 2014
  2. Cao XG, Zhang HY, Electron. Mater. Lett., 8(4), 467, 2012
  3. Zhang R, Lin W, Lawrence K, Wong CP, Int. J. Adhes. Adhes., 30, 403, 2010
  4. Hai HT, Takamura H, Koike J, J. Alloy. Compd., 564, 71, 2013
  5. Wu M, Lin B, Cao Y, Song J, Sun Y, Yang H, Zhang X, J. Mater. Sci.-Mater. El., 24, 4913, 2013
  6. Khatri I, Hoshino A, Watanabe F, Liu QM, Ishikawa R, Ueno K, Shirai H, Thin Solid Films, 558, 306, 2014
  7. Theuring M, Vehse M, von Maydell K, Agert C, Thin Solid Films, 558, 294, 2014
  8. Nishikawa H, Mikami S, Miyake K, Aoki A, Takemoto T, Mater. Trans., 51(10), 1785, 2010
  9. Chen Z, Zhang XD, Fang J, Liang JH, Liang XJ, Sun J, Zhang DK, Wang N, Zhao HX, Chen XL, Huang Q, Wei CC, Zhao Y, Appl. Energy, 135, 158, 2014
  10. Yang TL, Huang KY, Yang S, Hsieh HH, Kao CR, Sol. Energy Mater. Sol. Cells, 123, 139, 2014
  11. Tsai JT, Lin ST, J. Alloy. Compd., 548, 105, 2013
  12. Wen X, Xie YT, Wing M, Mak C, Cheung KY, Li XY, Renneberg R, Yang S, Langmuir, 22(10), 4836, 2006
  13. Fang J, You H, Kong P, Yi Y, Song X, Ding B, Cryst. Growth Des., 7(5), 864, 2007
  14. Lv S, Suo H, Zhao X, Wang C, Jing S, Zhou T, Xu Y, Zhao C, Solid State Commun., 149, 1755, 2009
  15. Lu S, Suo H, Wang H, Wang C, Wang J, Xu Y, Zhao C, Solid State Sci., 12, 1287, 2010
  16. Lu S, Suo H, Zhou T, Wang C, Jing S, Fu Q, Xu Y, Zhao C, Solid State Commun., 149, 227, 2009
  17. Kramer JR, Werstiuk NH, Ni B, J. Phys. Chem. A, 110(1), 273, 2006
  18. Zhuo YJ, Sun WD, Dong LH, Chu Y, Appl. Surf. Sci., 257(24), 10395, 2011
  19. Liu R, Sen A, Chem. Mater., 24, 48, 2012
  20. Chen X, Cui CH, Guo Z, Liu JH, Huang XHM, Yu SH, Small, 7(7), 858, 2011
  21. Liu R, Li S, Yu X, Zhang G, Ma Y, Yao J, Keita B, Nadjo L, Cryst. Growth Des., 11, 3424, 2011
  22. Huang TK, Cheng TH, Yen MY, Hsiao WH, Wang LS, Chen FR, Kai JJ, Lee CY, Chiu HT, Langmuir, 23(10), 5722, 2007
  23. Nadagouda MN, Varma RS, Crys. Growth Des., 7(12), 2582, 2007
  24. Jung DS, Lee HM, Kang YC, Park SB, J. Colloid Interface Sci., 364(2), 574, 2011
  25. Hai HT, Ahn JG, Kim DJ, Lee JR, Chung HS, Kim CO, Surf. Coat. Technol., 201, 3788, 2006
  26. Xu X, Luo X, Zhuang H, Li W, Zhang B, Mater. Lett., 57, 3987, 2003
  27. Barcaro G, Fortunelli A, Rossi G, Nita F, Ferrando R, J. Phys. Chem. B, 110(46), 23197, 2006
  28. Zhao J, Zhang D, Zhao J, J. Solid State Chem., 184, 2339, 2011
  29. Cao XG, Zhang HY, Appl. Surf. Sci., 264, 756, 2013
  30. Cao XG, Zhang HY, Appl. Surf. Sci., 264, 756, 2013
  31. Hai HT, Takamura H, Koike J, J. Alloy. Compd., 564, 71, 2013
  32. Wu M, Lin B, Cao Y, Song J, Sun Y, Yang H, Zhang X, J.Mater. Sci.-Mater. Electron., 24, 4913, 2013
  33. Kang Y, Chen F, J. Appl. Electrochem., 46, 667, 2013
  34. Chen KT, Ray DT, Peng YH, Hsu YC, Curr. Appl. Phys., 13(7), 1496, 2013
  35. Cao XG, Zhang HY, Powder Technol., 226, 53, 2012
  36. Zhao J, Zhang DM, Song XJ, Appl. Surf. Sci., 258(19), 7430, 2012
  37. Mancier V, Bertrand CR, Dille J, Michel J, Fricoteaux P, Ultrason. Sonochem., 17, 690, 2010
  38. Tsai CH, Chen SY, Song JM, Chen IG, Lee HY, Corrosion Sci., 74, 123, 2013
  39. Cherevko S, Chung CH, Talanta, 80, 1371, 2010
  40. Arai S, Kitamura T, ECS Electrochem. Lett., 3(5), D7, 2014
  41. Qiu R, Cha HG, Noh HB, Shim YB, Zhang XL, Qiao R, Zhang D, Kim YI, Pal U, Kang YS, J. Phys. Chem. C, 113, 15891, 2009
  42. Djokic SS, Djokic NS, J. Electrochem. Soc., 158(4), D204, 2011
  43. Wu SH, Chen DH, J. Colloid Interface Sci., 273(1), 165, 2004
  44. Yan C, Xue D, Cryst. Growth Des., 8(6), 1849, 2008
  45. Liu Y, Chu Y, Zhuo YJ, Dong LH, Li LL, Li MY, Adv. Funct. Mater., 17(6), 933, 2007
  46. Zhang X, Wang G, Liu X, Wu H, Fang B, Cryst. Growth Des., 4, 1430, 2008
  47. Zhang ZY, Hu CG, Feng B, Zheng CH, He XS, Wang X, J. Supercond. Nov. Magn., 23, 893, 2010
  48. Mahima S, Karthik C, Garg S, Mehta R, Teki R, Ravishankar N, Ramanath G, Cryst. Growth Des., 10, 3925, 2010
  49. Zeng Y, Li T, Fu M, Jiang S, Zhang G, J. Alloy. Compd., 585, 277, 2014
  50. Huang LM, Luo LM, Ding XY, Luo GN, Zan X, Cheng JG, Wu YC, Powder Technol., 258, 216, 2014
  51. Shin HC, Dong J, Liu ML, Adv. Mater., 15(19), 1610, 2003
  52. Zhuo K, Jeong MG, Chung CH, RSC Adv., 3, 12611, 2013
  53. Soni PL, Vandna Soni, Coordination Chemistry, Taylor & Francis Group, Boca Raton, FL (2013).
  54. Schlesinger M, Paunovic M, Modern electroplating, New York, Wiley, 5th Ed. (2010).