Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1456-1465, 2017
Investigation of hydrodynamic and mass transfer of mercaptan extraction in pulsed and non-pulsed packed columns
We investigated the hydrodynamic behavior and mass transfer characteristics of a pilot-scale conventional packed bed extraction column of mercaptan removal from liquid propane. The extraction column was filled with pall rings structured packing where mercaptan was extracted from the continuous phase to the dispersed phase, accompanied by a chemical reaction in propane-mercaptan-caustic system. The pulsing was introduced into the column to enhance the mass transfer rate. Hydrodynamic parameters such as hold up, flooding velocity and mean drop size were studied together with the effect of chemical reaction on increasing mass transfer performance. Finally, the mass transfer and axial mixing coefficients were obtained from the optimization of data by ADM. It was found that at the pulsation intensity from 0.003 to 0.007 m/s, the maximum mass transfer and minimum axial mixing occurred and it can be concluded that pulsation improves the efficiency of mass transfer just at low intensities.
[References]
  1. Lee SC, Hyun GH, Korean J. Chem. Eng., 19(5), 827, 2002
  2. Jeong GH, Kim C, Korean J. Chem. Eng., 1(2), 111, 1984
  3. Choi YK, Kim C, Korean J. Chem. Eng., 11(2), 81, 1994
  4. Akhgar S, Safdari J, Towfighi J, Amani P, Mallah MH, RSC Adv., 7, 2288, 2017
  5. Han DH, Hong WH, Korean J. Chem. Eng., 15(3), 324, 1998
  6. Van Dijck WJD, US Patent, 2,011,186 (1935).
  7. Rahimi M, Mohseni M, Korean J. Chem. Eng., 25(3), 395, 2008
  8. Moon JK, Jung CH, Lee EH, Lee BC, Korean J. Chem. Eng., 23(6), 1023, 2006
  9. Lee YJ, Jeong H, Park HK, Park KY, Kang TW, Cho J, Kim DS, Korean J. Chem. Eng., 33(8), 2418, 2016
  10. Saha T, Kumar S, Bhaumik SK, Korean J. Chem. Eng., 33(12), 3337, 2016
  11. Jie H, Ling JM, Bin TC, Sheng SJ, Korean J. Chem. Eng., 28(11), 2190, 2011
  12. Khan JA, Jamal Y, Shahid A, Boulanger BO'N, Korean J. Chem. Eng., 33(2), 582, 2016
  13. Singha S, Sarkar U, Korean J. Chem. Eng., 32(1), 20, 2015
  14. Jafari SA, Jamali A, Korean J. Chem. Eng., 33(4), 1296, 2016
  15. Jia Y, Du D, Zhang X, Ding X, Zhong O, Korean J. Chem. Eng., 30(9), 1735, 2013
  16. Mateo-Vivaracho L, Cacho J, Ferreira V, J. Chromatogr. A, 1185, 9, 2008
  17. Rousseau ERW, Handbook of separation process technology, John Wiley & Sons (2009).
  18. Afshar AS, Hashemi SR, Miri M, Setayeshi P, Pet. Sci. Technol., 31, 2364, 2013
  19. Afshar AS, Hashemi SR, World Acad. Sci. Eng. Technol., 79, 56, 2011
  20. Farshi A, Rabiei Z, Pet. Coal, 47, 49, 2005
  21. Koncsag CI, Barbulescu A, Chem. Eng. Process., 47(9-10), 1717, 2008
  22. de Angelis A, Appl. Catal. B: Environ., 113-114, 37, 2012
  23. Chantry WA, Von Berg RL, Wiegandt HF, Ind. Eng. Chem., 47, 1153, 1955
  24. Mirzaie M, Sarrafi A, Pour HH, Baghaie A, Molaeinasab M, Solvent Extr. Ion Exch., 34, 643, 2016
  25. Delgado JMPQ, Heat Mass Transf., 42, 279, 2006
  26. Jie Y, Weiyang F, Can. J. Chem. Eng., 78, 1040, 2000
  27. Sanpui D, Singh MK, Khanna A, Korean J. Chem. Eng., 21(2), 511, 2004
  28. Angelov G, Gourdon C, Korean J. Chem. Eng., 32(1), 37, 2015
  29. Choo JO, Yeo YK, Kim MK, Kim KS, Chang KS, Korean J. Chem. Eng., 15(1), 90, 1998
  30. Chun BS, Lee HG, Cheon JK, Wilkinson G, Korean J. Chem. Eng., 13(3), 234, 1996
  31. Sanpui D, Khanna A, Korean J. Chem. Eng., 20(4), 609, 2003
  32. Danckwerts PV, Chem. Eng. Sci., 2, 1, 1953
  33. Morales C, Elman H, Perez A, Comput. Chem. Eng., 31(12), 1694, 2007
  34. Sleicher CA, AIChE J., 5, 145, 1959
  35. Din GU, Chughtai IR, Inayat MH, Khan IH, Qazi NK, Sep. Purif. Technol., 73(2), 302, 2010
  36. Din GU, Chughtai IR, Inayat MH, Khan IH, Appl. Radiat. Isot., 67, 1248, 2009
  37. Li HB, Luo GS, Fei WY, Wang JD, Chem. Eng. J., 78(2-3), 225, 2000
  38. Tang XJ, Luo GS, Wang JD, Chem. Eng. Sci., 59(21), 4457, 2004
  39. Tang XJ, Luo GS, Li HB, Wang JD, Comput. Chem. Eng., 30(6-7), 978, 2006
  40. Hufnagl H, McIntyre M, Blaβ E, Chem. Eng. Technol., 14, 301, 1991
  41. Steiner L, Bertschmann H, Hartland S, Chem. Eng. Res. Des., 73(5), 542, 1995
  42. Weinstein O, Semiat R, Lewin DR, Chem. Eng. Sci., 53(2), 325, 1998
  43. Mohanty S, Rev. Chem. Eng., 16, 199, 2000
  44. Safari A, Safdari J, Abolghasemi H, Forughi M, Moghaddam M, Chem. Eng. Res. Des., 90(2), 193, 2012
  45. Steiner L, Hartland S, Handb. Fluids Motion, 1049 (1983).
  46. Treybal RE, Mass-transfer operations, New York (1981).
  47. McCabe WL, Smith JC, Harriott P, Unit operations of chemical engineering, New York, McGraw-Hill (1993).
  48. Higbie R, Trans. Am. Inst. Chem. Eng., 35, 36, 1935
  49. Danckwerts PV, Ind. Eng. Chem., 43, 1460, 1951
  50. van Krevelen DW, van Hooren CJ, Recl. des Trav. Chim. des Pays-Bas, 67, 587, 2010
  51. Andrzej Gorak ZO, Distillation: Equipment and Processes, Academic Press (2014).
  52. Mehmandoost S, Hejaz P, Propane treatment unit, operating manual. Basis of design and unit operating considerations. Iran South Gas Field: Phases 9 & 10. Assaloyeh, Iran: Pars Oil and Gas Company (2005).
  53. Prabhakar A, Sriniketan G, Varma YBG, Can. J. Chem. Eng., 66, 232, 1988
  54. Wang Y, Mumford KA, Smith KH, Li Z, Stevens GW, Ind. Eng. Chem. Res., 55(3), 714, 2016
  55. Lee YK, Ju DP, Kim C, Korean J. Chem. Eng., 8(2), 80, 1991
  56. Kumar A, Hartland S, Ind. Eng. Chem. Res., 38(3), 1040, 1999