Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1385-1392, 2017
Performance improvement of local Korean natural hydraulic lime-based mortar using inorganic by-products
Our goal was to verify the manufacturing availability of local Korean natural hydraulic lime (K-NHL) using local Korean low-grade limestone and to test the basic physical properties on the basis of EU standards (BS EN 459-1:2015). We also sought to improve the physical properties of natural hydraulic lime by adding inorganic by-products such as blast furnace slag and silica fume. Where the inorganic by-products were not incorporated, properties such as soundness, air content, particle size, and water absorption (excluding compressive strength and setting time) did not show significant differences with the physical properties evaluated based on EU standards. Also, in terms of the composition of hydraulic phase, local Korean NHL A5 and A8 were similar to NHL 2 of EU standards, whereas local Korean NHL HL correlated with NHL 3.5 or NHL 5. When inorganic by-products were added, the compressive strength and setting time were improved.
[References]
  1. Dai SB, Dai Heritage Science, 25, 1, 2013
  2. Lanasa J, Perez Bernalb JL, Bellob MA, Alvarez Galindoa JI, Cem. Concr. Res., 34, 2191, 2004
  3. Z. Zhou, Development of bond strength in hydraulic lime mortared brickwork, University of Bath (2012).
  4. Zhao P, Jackson MD, Zhang Y, Li G, Monteiro PJM, Yang L, Construction and Building Materials, 84, 477, 2015
  5. Alberto SA, Francisco HO, Cem. Concr. Res., 40, 66, 2010
  6. S. Paviia, B. Fitzgerald and E. Treacy, Concrete Research in Ireland Colloquium, December 2005, Ciaran McNally ed., University College Dublin, 101 (2006).
  7. Building lime - Definition, Specification and Conformity Criteria, BS EN 459-1, BSI Standards Publication (2015).
  8. El-Turki A, Ball RJ, Allen GC, Cem. Concr. Res., 27, 1233, 2007
  9. Kalagri A, Miltiadou-Fezans A, Vintzileou E,, Mater. Struct, 43, 1135, 2010
  10. Falchi L, Zendri E, Capovilla E, Romagnoni P, De Bei M, Mateials and Structures, 50, 66, 2017
  11. Barr S, McCarter WJ, Suryanto B, Construction and Building Materials, 841, 128, 2015
  12. Salman M, Cizer O, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Van Balen K, Chem. Eng. J., 246, 39, 2014
  13. Vyvaril M, ilavsky T, Toma, Bayer P, Appl. Mechanics Mater., 861, 141, 2017
  14. Marcari G, Basili M, Vestroni F, Composites Part B: Engineering, 108, 131, 2017
  15. Liu Y, Lu C, Zhang H, Li J, Environ. Eng. Res., 21, 341, 2016
  16. Mymrin V, Meyer SAS, Alekseev KP, Pawlowsky U, Fernandes LH, Scremim CS, Catai RE, Construction and Building Materials, 50, 184, 2014
  17. Meral B, Pagona MK, Nikolaos KK, Microchim. Acta, 162, 325, 2005
  18. V. B. Bosiljkov, Historical Constructions, P.B. Lourenco, P. Roca (Eds.), Guimaraes, 2001, 343 (2001).
  19. Sounthararajan VM, Srinivasan K, Sivakumar A, J. Appl. Sci, Eng. Technol., 6, 2649, 2013
  20. Elsayed AA, Concrete Research Letters, 3, 258, 2012
  21. G. Allen and R. Ball, in 3rd Portugueses Congress on Construction Mortars, 1 (2010).
  22. Ali A, Ebrahim NK, Mahshad Y, Ceram-Silikaty, 55, 68, 2011
  23. Chen W, Brouwers HJH, J. Mater. Sci., 42(2), 428, 2007
  24. Nasir NAM, Aziz FNAA, Safiee NA, Aust. J. Basic Appl. Sci,, 8, 392, 2014
  25. El-Alfi EA, Radwan AM, Abed El-Aleem S, Ceram-Silikaty, 48, 29, 2004
  26. P.C. Hewlett, Lea’s chemistry of cement and concrete, Wiley, New York (1997).