Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1328-1336, 2017
Laminar flow and chaotic advection mixing performance in a static mixer with perforated helical segments
The laminar flow and chaotic mixing characteristics of a high-viscosity fluid in static mixers with staggered perforated helical segments were numerically investigated in the range of Re=0.1-150. The numerical results of pressure drop of Kenics static mixer have a good agreement with the reported data from the literature. The effects of aspect ratio Ar and Reynolds number on the mixing performance of Modified Kenics Static Mixers (MKSM) were evaluated by Darcy friction coefficient, shear rate, stretching rate, and Lyapunov exponent, respectively. The product of f×Re for MKSM linearly increased with the increase of Re, but it was constant under Re<10. The values of shear rate in the first perforated hole of mixing elements gradually became much larger by 1.10%-11.78% than those in the second perforated hole with the increasing Re. With the increase of dimensionless axial mixing length, the stretching rate increased linearly and the sensitivity for initial condition gradually weakened. A larger Ar is beneficial for micro-mixing in creeping flow. The average Lyapunov exponent linearly increases with the increase of Re. The profiles of Lyapunov exponent at different dimensionless perforated diameter (d/W) and perforated spacing (s/W) indicate that the chaotic mixing in MKSM is much more sensitive to d/W than s/W. A dimensionless parameter η taking into account the mixing degree and pressure drop was employed to evaluate the mixing efficiency. The optimization of perforated helical segments with the highest mixing efficiency at Re=100 was d/W=0.55 and s/W=1.2.
[References]
  1. Rahmani RK, Keith TG, Ayasoufi A, J. Fluids Eng., 128, 467, 2006
  2. Regner M, Ostergren K, Tragardh C, Ind. Eng. Chem. Res., 47(9), 3030, 2008
  3. Regner M, Ostergren K, Tragardh C, Chem. Eng. Sci., 61(18), 6133, 2006
  4. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G, Chem. Eng. Res. Des., 81(7), 787, 2003
  5. Ghanem A, Lemenand T, Della Valle D, Peerhossaini H, Chem. Eng. Res. Des., 92(2), 205, 2014
  6. Zidouni F, Krepper E, Rzehak R, Rabha S, Schubert M, Hampel U, Chem. Eng. Sci., 137, 476, 2015
  7. Hobbs DM, Muzzio FJ, Chem. Eng. J., 67, 153, 1997
  8. Hobbs DM, Muzzio FJ, AIChE J., 43(12), 3121, 1997
  9. Hobbs DM, Muzzio FJ, Chem. Eng. Sci., 53(18), 3199, 1998
  10. Hobbs DM, Muzzio FJ, Chem. Eng. Sci., 70, 93, 1998
  11. Fourcade E, Wadley R, Hoefsloot HCJ, Green A, Iedema PD, Chem. Eng. Sci., 56(23), 6729, 2001
  12. Rahmani RK, Keith TG, Ayasoufi A, J. Fluids Eng., 127, 467, 2005
  13. Lisboa PF, Fernandes J, Simoes PC, Mota JPB, Saatdjian E, J. Supercrit. Fluids, 55(1), 107, 2010
  14. Saatdjian E, Rodrigo AJS, Mota JPB, Chem. Eng. J., 187, 289, 2012
  15. Kumar V, Shirke V, Nigam KDP, Chem. Eng. J., 139(2), 284, 2008
  16. Jaworski Z, Pianko-Oprych P, Marchisio DL, Nienow AW, Chem. Eng. Res. Des., 85(A5), 753, 2007
  17. Tajima H, Yamasaki A, Kiyono F, Teng H, AIChE J., 50(4), 871, 2004
  18. Tajima H, Yamasaki A, Kiyono F, Energy Fuels, 19(6), 2364, 2005
  19. Tajima H, Yamasaki A, Kiyono F, Teng H, AIChE J., 52(8), 2991, 2006
  20. Tajima H, Yoshida Y, Abiko S, Yamagiwa K, Chem. Eng. J., 156(2), 479, 2010
  21. Ujhidy A, Nemeth J, Szepvolgyi J, Chem. Eng. Process., 42(1), 1, 2003
  22. Lang E, Drtina P, Streiff F, Fleischli M, Int. J. Heat Mass Transf., 38(12), 2239, 1995
  23. Mickaily-Huber ES, Bertrand F, Tanguy P, Meyer T, Renken A, Rys FS, Wehrli M, Chem. Eng. J. Biochem. Eng. J., 63, 117, 1996
  24. Zalc JM, Szalai ES, Muzzio FJ, Jaffer S, AIChE J., 48(3), 427, 2002
  25. Hirech K, Arhaliass A, Legrand J, Ind. Eng. Chem. Res., 42(7), 1478, 2003
  26. Rabha S, Schubert M, Grugel F, Banowski M, Hampel U, Chem. Eng. J., 262, 527, 2015
  27. Meng HB, Wang F, Yu YF, Song MY, Wu JH, Ind. Eng. Chem. Res., 53(10), 4084, 2014
  28. Meng HB, Song MY, Yu YF, Wang F, Wu JH, Can. J. Chem. Eng., 93(10), 1849, 2015
  29. Yu YF, Wang HY, Song MY, Meng HB, Wang ZY, Wu JH, Appl. Therm. Eng., 94, 282, 2016
  30. Lei YG, Zhao CH, Song CF, Chem. Eng. Technol., 35(12), 2133, 2012
  31. Meng HB, Zhu GX, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 99, 647, 2016
  32. Curran SJ, Hayes RE, Afacan A, Williams MC, Tanguy PA, Ind. Eng. Chem. Res., 39(1), 195, 2000
  33. Bakker A, Gates LE, Chem. Eng. Prog., 91(12), 25, 1995
  34. Rauline D, Tanguy PA, Le Blevec JM, Bousquet J, Can. J. Chem. Eng., 76(3), 527, 1998
  35. Heywood NI, Viney LJ, Stewart IW, Fluid Mixing II, 147, 1984
  36. ANSYS Inc., ANSYS ICEM CFD Help Manual. ANSYS Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA, U.S.A. (2015).
  37. Cengel Y, Ghajar A, Heat and Mass Transfer: Fundamentals and Applications, McGraw-Hill Science/Engineering/Math, USA (2014).
  38. Grace HP, Chem. Eng. Commun., 14, 225, 1982
  39. Heniche M, Tanguy PA, Reeder MF, Fasano JB, AIChE J., 51(1), 44, 2005
  40. ANSYS Inc., ANSYS Fluent User’s Guide. ANSYS Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA, U.S.A. (2015).
  41. Ottino JM, The kinematics of mixing: stretching, chaos, and transport, Cambridge University Press, Cambridge (1989).
  42. Rauline D, Le Blevec JM, Bousquet J, Tanguy PA, Chem. Eng. Res. Des., 78(3), 389, 2000
  43. Liu M, Peskin RL, Muzzio FJ, Leong CW, AIChE J., 40(8), 1273, 1994
  44. Liu M, Muzzio FJ, Peskin RL, Chaos Solitons & Fractals, 4, 2145, 1994