Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1319-1327, 2017
Nanoparticle deposition in transient gaseous microchannel flow considering hindered motion and rarefaction effect
Interaction between wall and flow becomes more important when the scale of a channel decreases. We investigated two effects of wall presence for the transport of nanoparticle in a microchannel, which are the rarefaction effect up to early transient regime and hindered motion of nanoparticles. Lattice Boltzmann method coupled with Lagrangian nanoparticle tracking was used for modeling. Series of numerical simulation for various nanoparticle diameters, channel geometries, fluid velocities, and Knudsen numbers were performed. Some important features on nanoparticle transport such as capture efficiency, deposition velocity and deposition location were discussed. Using suitable dimensionless parameters, correlations for capture efficiency and deposition velocity were obtained. Considering hindered motion leads to significant decrease in the capture efficiency and deposition velocity. Results show that the effect of rarefaction on deposition is mostly because of varying the force acting on nanoparticles not due to slip velocity of fluid field near boundaries.
[References]
  1. Rahimi-Gorji OM, Pourmehran O, Gorji-Bandpy M, Gorji TB, J. Mol. Liq., 209, 121, 2015
  2. Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Gorji TB, J. Magn. Magn. Mater., 393, 380, 2015
  3. Pourmehran O, Gorji TB, Gorji-Bandpy M, Biomech. Model. Mechanobiol., 15, 1355, 2016
  4. Tu J, Inthavong K, Ahmadi G, Computational fluid and particle dynamics in the human respiratory system, 1st Ed., Springer Science & Business Media (2012).
  5. Hung LH, Lee AP, J. Med. Biol. Eng., 27(1), 1, 2007
  6. Kockmann N, Dreher S, Engler M, Woias P, Chem. Eng. J., 135, S121, 2008
  7. Marshall JS, J. Aerosol Sci., 38(3), 333, 2007
  8. Yang RJ, Hou JH, Wang YN, Lin CH, Fu LM, Biomicrofluidics, 6(3), 34110, 2012
  9. Ansari V, Goharrizi AS, Jafari S, Abolpour B, Comput. Fluids, 108, 170, 2015
  10. Basagaoglu H, Allwein S, Succi S, Dixon H, Carrola TJ, Stothoff S, Microfluid. Nanofluid., 15(6), 785, 2013
  11. Afshar H, Shams M, Nainian SMM, Ahmadi G, Int. Commun. Heat Mass Transf., 36, 1060, 2009
  12. Andarwa S, Tabrizi HB, Ahmadi G, Particuology, 16, 84, 2014
  13. Li A, Ahmadi G, Aerosol Sci. Technol., 16(4), 209, 1992
  14. Michaelides EE, J. Fluids Eng., 138(5), 51303, 2016
  15. Katelhon E, Sokolov SV, Compton RG, Sens. Actuators B-Chem., 234, 420, 2016
  16. Adamczyk Z, Van de Ven TGM, J. Colloid Interface Sci., 80(2), 340, 1981
  17. Elimelech M, Gregory J, Jia X, Particle deposition and aggregation: measurement, modelling and simulation, Butterworth-Heinemann (2013).
  18. Park JD, Myung JS, Ahn KH, Korean J. Chem. Eng., 33(11), 3069, 2016
  19. Kandlikar S, Garimella S, Li D, Colin S, King MR, Heat transfer and fluid flow in minichannels and microchannels, Elsevier (2005).
  20. Yue XJ, Wu ZH, Ba YS, Lu YJ, Zhu ZP, Ba CD, Int. J. Mod. Phys. C, 26(04), 155003, 2015
  21. Wang H, Zhao H, Guo Z, He Y, Zheng C, J. Comp. Phys., 239, 57, 2013
  22. Zou Q, He X, Phys. Fluids, 9(6), 1591, 1997
  23. Succi S, Phys. Rev. Lett., 89(6), 064502, 2002
  24. Goldman AJ, Cox RG, Brenner H, Chem. Eng. Sci., 22(4), 637, 1967
  25. Goldman AJ, Cox RG, Brenner H, Chem. Eng. Sci., 22(4), 653, 1967
  26. Bevan MA, Prieve DC, J. Chem. Phys., 113(3), 1228, 2000
  27. Huang P, Guasto JS, Breuer KS, J. Fluid Mech., 637, 241, 2009
  28. Lin B, Yu J, Rice SA, Phys. Rev. E, 62(3), 3909, 2000
  29. Kim JH, Mulholland GW, Kukuck SR, Pui DY, J. Res. Natl. Inst. Stan., 110(1), 31, 2005
  30. Saffman PGT, J. Fluid Mech., 22(2), 385, 1965
  31. Sommerfeld M, Int. J. Multiph. Flow, 29(4), 675, 2003
  32. Jung S, Phares DJ, Srinivasa AR, Int. J. Multiph. Flow, 49, 1, 2013