Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1310-1318, 2017
Process simulation for the recovery of lactic acid using thermally coupled distillation columns to mitigate the remixing effect
The objective of this study was to find process simulations of the plant-wide scale lactic acid recovery process using thermally coupled distillation columns to mitigate the remixing effect. The remixing effect has been widely discussed because in a conventional column arrangement it induces a need for a significant amount of energy for repurification in lactic acid recovery processes. One way to overcome high energy consumption is by using thermally coupled distillation columns. This paper suggests and compares two types of thermally coupled distillation columns applied to the plant-wide scale lactic acid recovery process for removing the remixing effect considering a heavy organic impurity and lactic acid oligomerization in the process. The equilibrium stage model based on the RADFRAC module of Aspen Plus was employed for simulating the thermally coupled distillation columns. Simulation results showed that thermally coupled distillation columns can eliminate the remixing effect and reduce energy consumption compared to conventional lactic acid recovery processes.
[References]
  1. Han M, Park S, J. Process Control, 6(4), 247, 1996
  2. Hasebe S, Noda M, Hashimoto I, Comput. Chem. Eng., 23(4-5), 523, 1999
  3. Engelien HK, Skogestad S, Comput. Chem. Eng., 28(5), 683, 2004
  4. Al-Elg AH, Palazoglu A, Comput. Chem. Eng., 13, 1183, 1989
  5. Ferre JA, Castells F, Flores J, Ind. Eng. Chem. Process Des. Dev., 24, 128, 1985
  6. ANNAKOU O, MIZSEY P, Heat Recov. Syst. CHP, 15(3), 241, 1995
  7. Cho HJ, Choi SH, Kim TY, Kim JK, Yeo YK, Korean J. Chem. Eng., 32(7), 1229, 2015
  8. Kim YH, Korean J. Chem. Eng., 33(9), 2513, 2016
  9. Petlyuk FB, Platonov VM, Slavinskii DM, Int. Chem. Eng., 5, 555, 1965
  10. Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, O'Brien DE, Chem. Eng. Prog., 98(5), 64, 2002
  11. Long NVD, Lee M, Asia-Pac. J. Chem. Eng., 7, S71, 2012
  12. Christiansen AC, Skogestad S, Lien K, Comput. Chem. Eng., 21, S237, 1997
  13. Krolikowski L, AIChE J., 33, 643, 1987
  14. Fidkowski ZT, Agrawal R, AIChE J., 47(12), 2713, 2001
  15. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, Oliveira RPDS, Trends Food. Sci. Technol., 30, 70, 2013
  16. Park SC, Lee SM, Kim YJ, Kim WS, Koo YM, KSBB J., 21, 199, 2006
  17. Su CY, Yu CC, Chien IL, Ward JD, Ind. Eng. Chem. Res., 52, 11073, 2013
  18. Wang ZH, Zhao KF, Biotechnol. Bioeng., 47(1), 1, 1995
  19. Gonzalez MI, Alvarez S, Riera F, Alvarez R, J. Food Eng., 80(2), 553, 2007
  20. Liew MKH, Tanaka S, Morita M, Desalination, 101, 269, 1995
  21. Evangelista RL, Nikolov ZL, Appl. Biochem. Biotechnol., 57, 471, 1996
  22. Cockrem MCM, Johnson PD, US Patent, 5,210,296 (1993).
  23. Woo D, Cho Y, Kim BK, Hwang H, Han M, Korean Chem. Eng. Res., 48(3), 342, 2010
  24. Hernandez S, Jimenez A, Comput. Chem. Eng., 23(8), 1005, 1999
  25. Khalifa M, Emtir M, Clean. Techn. Environ. Policy, 11, 107, 2009
  26. Hernandez S, Segovia-Hernandez JG, Rico-Ramirez V, Energy, 31(12), 2176, 2006
  27. Shah VH, Agrawal R, AIChE J., 56(7), 1759, 2010
  28. Ashrafian R, Using dividing wall columns (DWC) in LNG production, M.S. Thesis, Norwegian University of Science and Technology Trondheim, Norway (2014).
  29. Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng. Res. Des., 79(7), 701, 2001
  30. Halvorsen IJ, Skogestad S, Ind. Eng. Chem. Res., 42(3), 596, 2003
  31. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J, Ind. Eng. Chem. Res., 43(9), 2049, 2004
  32. Asthana NS, Kolah AK, Vu DT, Lira CT, Miller DJ, Ind. Eng. Chem. Res., 45(15), 5251, 2006