Issue
Korean Journal of Chemical Engineering,
Vol.34, No.5, 1305-1309, 2017
Controlled release of iron for activation of persulfate to oxidize orange G using iron anode
Persulfate (PS) can be activated by transition metal to generate a sulfate radical and oxidize persistent organic pollutants. However, activation with excessive Fe(II) causes unnecessary self-degradation of PS. In this study, Fe(II) was slowly and continuously injected electrochemically using an iron anode to minimize the self-degradation of PS. Additionally, reaction rate was controlled by adjusting the current intensity applied to the system. Total organic carbon (TOC) was analyzed as an indicator of complete mineralization because the model pollutant, orange G (OG), produced secondary pollutants after disruption of the azo bonds. The removal rate of TOC was 1/10-th of that for OG. In addition, the effect of molar ratio of OG and PS was also studied to confirm the complete mineralization of OG.
[References]
  1. Xu XR, Li HB, Wang WH, Gu JD, Chemosphere, 57, 595, 2004
  2. Fernandez J, Bandara J, Lopez A, Buffat P, Kiwi J, Langmuir, 15(1), 185, 1999
  3. Hsueh C, Huang Y, Wang C, Chen CY, Chemosphere, 58, 1409, 2005
  4. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1, 2004
  5. Xie YB, Li XZ, Mater. Chem. Phys., 95(1), 39, 2006
  6. Xu XR, Li HB, Wang WH, Gu JD, Chemosphere, 59, 893, 2005
  7. Aleboyeh A, Olya ME, Aleboyeh H, J. Hazard. Mater., 162(2-3), 1530, 2009
  8. Kim J, Yeom C, Kim Y, Korean J. Chem. Eng., 33(6), 1855, 2016
  9. Yang SY, Yang X, Shao XT, Niu R, Wang LL, J. Hazard. Mater., 186(1), 659, 2011
  10. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A, Chemosphere, 101, 86, 2014
  11. Yang Y, Pignatello JJ, Ma J, Mitch WA, Environ. Sci. Technol., 48, 2344, 2014
  12. Huang KC, Couttenye RA, Hoag GE, Chemosphere, 49, 413, 2002
  13. Huling SG, Pivetz BE, In-situ chemical oxidation, in, DTIC Document (2006).
  14. Xu XR, Li XZ, Sep. Purif. Technol., 72(1), 105, 2010
  15. Son HS, Im JK, Zoh KD, Water Res., 43, 1457, 2009
  16. Stefan MI, Bolton JR, Environ. Sci. Technol., 32, 1588, 1998
  17. Moradi M, Ghanbari F, Manshouri M, Angali KA, Korean J. Chem. Eng., 33(2), 539, 2016
  18. Kordkandi SA, Forouzesh M, J. Taiwan Inst. Chem. Eng., 45, 2597, 2014
  19. Wang CW, Liang CJ, Chem. Eng. J., 254, 472, 2014
  20. Liang HY, Zhang YQ, Huang SB, Hussain I, Chem. Eng. J., 218, 384, 2013
  21. Han DH, Wan JQ, Ma YW, Wang Y, Huang MZ, Chen YM, Li DY, Guan ZY, Li Y, Chem. Eng. J., 256, 316, 2014
  22. Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 38, 3705, 2004
  23. Liu CS, Shih K, Sun CX, Wang F, Sci. Total Environ., 416, 507, 2012
  24. Ehl RG, Ihde AJ, J. Chem. Educ., 31, 226, 1954
  25. Yuan SH, Liao P, Alshawabkeh AN, Environ. Sci. Technol., 48, 656, 2014
  26. Park SM, Lee SW, Jeon PY, Baek K, Water Air Soil Pollut., 227, 462, 2016
  27. Brillas E, Sires I, Oturan MA, Chem. Rev., 109(12), 6570, 2009
  28. Zou J, Ma J, Chen L, Li X, Guan Y, Xie P, Pan C, Environ. Sci. Technol., 47, 11685, 2013
  29. Yahagi T, Degawa M, Seino Y, Matsushima T, Nagao M, Sugimura T, Hashimoto Y, Cancer Lett., 1, 91, 1975
  30. Figueroa S, Vazquez L, Alvarez-Gallegos A, Water Res., 43, 283, 2009
  31. Kumar R, Sinha A, Korean J. Chem. Eng., 33(11), 3281, 2016
  32. Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 37, 4790, 2003
  33. Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P, Appl. Geochem., 15, 785, 2000
  34. Baek K, Ciblak A, Mao XH, Kim EJ, Alshawabkeh A, Water Res., 47, 6538, 2013