Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1170-1176, 2017
Phase equilibria measurement of binary mixtures for triethylene glycol dimethacrylate and triethylene glycol diacrylate in supercritical CO2
The phase equilibrium curves for the (CO2+triethylene glycol dimethacrylate) and (CO2+triethylene glycol diacrylate) systems at five temperatures (313.2, 333.2, 353.2, 373.2 and 393.2) K and pressures up to 30.34MPa were measured by synthetic apparatus. The solubility of triethylene glycol di(meth)acrylate in the (CO2+triethylene glycol dimethacrylate) and (CO2+triethylene glycol diacrylate) systems increased as the temperature increased at a fixed pressure. The (CO2+triethylene glycol dimethacrylate) and (CO2+triethylene glycol diacrylate) systems exhibited type-I phase equilibria. The experimental results for the (CO2+triethylene glycol dimethacrylate) and (CO2+triethylene glycol diacrylate) mixtures were correlated with the Peng-Robinson equation of state using a mixing rule including two adjustable parameters. The properties for the critical pressure, critical temperature and acentric factor of triethylene glycol dimethacrylate and triethylene glycol diacrylate were predicted with the Joback and Lyderson group contribution method.
[References]
  1. Schweikl H, Schmalz G, Rackebrandt K, Mutat. Res., 415, 119, 1998
  2. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 19, International Agency for Research on Cancer, Lyon (1979).
  3. Evonik Industries AG, GPS Safety Summary, Version 1, pp. 1-6 (2013).
  4. Peutzfeldt A, Eur. J. Oral. Sci., 105, 97, 1999
  5. Djozan D, Jozan S, Aminian R, Baheri T, J. Chromatogr. Sci., 48, 130, 2010
  6. Meyer JM, Autredent, 56, 81, 2010
  7. Batarseh G, Windsor LJ, Labban NY, Liu Y, Gregson K, Operative Dentistry, 39-1, E1 (2014).
  8. Andrews LS, Clary JJ, J. Toxicol. Environ. Health, 19, 149, 1986
  9. Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581, 1996
  10. Wichterle I, Pure Appl. Chem., 65, 1003, 1993
  11. Kiran E, J. Supercrit. Fluids, 47(3), 466, 2009
  12. Byun HS, Hasch BM, McHugh MA, Mahling FO, Busch M, Buback M, Macromolecules, 29(5), 1625, 1996
  13. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction; 2nd Ed., Butterworth-Heinemann: Stoneham (1994).
  14. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria; 3rd Ed., Prentice-Hall, Inc.: Englewood Cliffs, NJ (1998).
  15. Jang YS, Yang DS, Byun HS, J. Chem. Eng. Data, 56(11), 4116, 2011
  16. Kim SH, Jang YS, Yoon SD, Byun HS, Fluid Phase Equilib., 312, 93, 2011
  17. Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91, 2014
  18. Cho SH, Yoon SD, Byun HS, Korean J. Chem. Eng., 30(3), 739, 2013
  19. Kim SH, Jang YS, Byun HS, Korean J. Chem. Eng., 27(4), 1291, 2010
  20. Jang YS, Kim SH, Yoo KP, Byun HS, Fluid Phase Equilib., 302(1-2), 234, 2011
  21. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  22. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Liquids and Gases, 5th Ed., McGraw-Hill, New York (2001).
  23. Jang YS, Choi YS, Byun HS, Korean J. Chem. Eng., 32(5), 958, 2015
  24. Yoon SD, Byun HS, Korean J. Chem. Eng., 31(3), 522, 2014
  25. Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344, 2003
  26. Scott RL, van Konynenburg PB, Discuss. Faraday Soc., 49, 87, 1970
  27. Rowlinson JS, Swinton FL, Liquid and Liquid Mixtures, 3rd Ed., Butterworth, Boston (1982).
  28. Kuester JL, Mize JH, Optimization Techniques with Fortran, McGraw-Hill, New York (1973).
  29. http://www.specialty-monomers.basf.com/portal/streamer?fid=235707.
  30. http://www.chemspider.com/Chemical-structure.7691.htm.