Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1062-1072, 2017
Comparative study of electrocoagulation and electrochemical Fenton treatment of aqueous solution of benzoic acid (BA): Optimization of process and sludge analysis
Benzoic acid containing synthetic solution was pretreated by acid precipitation at various pH (1-3) and temperature (15-60 °C). Pre-treated solution was further treated by electrocoagulation (EC) and electrochemical Fenton (EF) processes using iron anode and graphite cathode. Optimization of independent operating parameters, namely, initial pH: (3-11), current density (A/m2): (15.24-76.21), electrolyte concentration (mol/L): (0.03-0.07) and electrolysis time (min): (15-95) for EC process and pH: (1-5), current density (A/m2): (15.24-76.21), H2O2 concentration (mg/L): (100-500) and electrolysis time (min): (15-95) for EF process, was performed using central composite design (CCD) in response surface methodology (RSM). Maximum removal efficiencies of BA- 76.83%, 88.50%; chemical oxygen demand (COD) - 69.23%, 82.21% and energy consumption (kWh/kg COD removed) - 30.86, 21.15 were achieved by EC and EF processes, respectively, at optimum operating conditions. It was found that EF process is more efficient than EC process based on removal of BA and COD with lower energy consumption. The sludge obtained after EC and EF treatments was analyzed by XRD, FTIR, DTA/TGA and SEM/EDX techniques.
[References]
  1. Wittcoff HA, Reuben BG, Plotkin JS, Industrial Organic Chemicals, 2nd Ed., Wiley-Interscience (2004).
  2. Kleerebezem R, Beckers J, Pol LWH, Lettinga G, Biotechnol. Bioeng., 91(2), 169, 2005
  3. Pophali GR, Khan R, Dhodapkar RS, Nandy T, Devotta S, J. Environ. Manage., 85, 1024, 2007
  4. Karthik M, Dafale N, Pathe P, Nandy T, J. Hazard. Mater., 154(1-3), 721, 2008
  5. Guyot JP, Macarie H, Noyola A, Appl. Biochem. Biotechnol., 24/25, 579, 1990
  6. Macarie H, Guyot JP, Appl. Microbiol. Biotechnol., 38, 398, 1992
  7. Young JC, Kim IS, Page IC, Wilson DR, Brown GJ, Cocci AA, Water Sci. Technol., 42, 277, 2000
  8. Noyola A, Macarie W, Guyot JP, Environ. Technol., 11, 239, 1990
  9. Zhang XX, Cheng SP, Wan YQ, Sun SL, Zhu CJ, Zhao DY, Pan WY, Int. Biodeterior. Biodegrad., 58, 94, 2006
  10. Shirota M, Seki T, Tago K, Katoh H, Marumo H, Furuya M, Shindo T, Ono H, J. Toxicol. Sci., 33, 431, 2008
  11. US EPA, Part 136 (1992).
  12. Thamer BJ, Voigt AF, J. Phys. Chem., 56, 225, 1952
  13. Zhang XX, Sun SL, Zhang Y, Wu B, Zhang ZY, Liu B, Yang LY, Cheng SP, J. Hazard. Mater., 176(1-3), 300, 2010
  14. Meyer RB, Fischbein A, Rosenman K, Lerman Y, Drayer DE, Reidenberg MM, Am. J. Med., 76, 989, 1984
  15. Cui L, Shi Y, Dai G, Pan H, Chen J, Song L, Wang S, Chang HC, Sheng H, Wang X, Toxicol. Appl. Pharmcol., 210, 24, 2006
  16. Cui L, Dai G, Xu L, Wang S, Song L, Zhao R, Xiao H, Zhou J, Wang X, Toxicology, 201, 59, 2004
  17. Wibbertmann A, Kielhorn JG, Koennecker I, Mangelsdorf C, Melber C, World Health Organization (2000).
  18. Verrna S, Prasad B, Mishra IM, J. Hazard. Mater., 178(1-3), 1055, 2010
  19. Wu CH, React. Kinet. Catal. Lett., 90(2), 301, 2007
  20. Central Pollution Control Board (CPCB) (2005).
  21. Asghar A, Raman AAA, Daud WMAW, J. Clean Prod., 87, 826, 2015
  22. Chon MA, Sharma AK, Burn S, Saint CP, J. Clean Prod., 35, 230, 2012
  23. Lopez-Grimau V, Gutierrez MC, Valldeperas J, Crespi M, Color Technol., 128, 36, 2011
  24. Chen GH, Sep. Purif. Technol., 38(1), 11, 2004
  25. Holt PK, Barton GW, Mitchell CA, Chemosphere, 59, 355, 2005
  26. Brillas E, Sires I, Oturan MA, Chem. Rev., 109(12), 6570, 2009
  27. Li JP, Ai ZH, Zhang LZ, J. Hazard. Mater., 164(1), 18, 2009
  28. Atmaca E, J. Hazard. Mater., 163(1), 109, 2009
  29. Neyens E, Baeyens J, J. Hazard. Mater., 98(1-3), 33, 2003
  30. Ma J, Song W, Chen C, Ma W, Zhao J, Tang Y, Environ. Sci. Technol., 395, 5810, 2005
  31. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Adlan MN, J. Hazard. Mater., 176, 749, 2009
  32. Azama M, Bahram M, Nouri S, Naseri A, J. Serb. Chem. Soc., 77, 235, 2012
  33. Garcia-Segura S, Almeida LC, Bocchi N, Brillas E, J. Hazard. Mater., 194, 109, 2011
  34. Virkutyte J, Rokhina E, Jegatheesan V, Bioresour. Technol., 101(5), 1440, 2010
  35. Marashi SKF, Kariminia HR, Savizi ISP, Biotechnol. Lett., 35(2), 197, 2013
  36. Verma S, Prasad B, Mishra IM, Ind. Eng. Chem. Res., 50(9), 5352, 2011
  37. Garg KK, Prasad B, J. Taiwan Inst. Chem. Eng., 56, 122, 2015
  38. APHA, Washington DC, U.S.A. (1995).
  39. Garg KK, Prasad B, Srivastava VC, Sep. Purif. Technol., 128, 80, 2014
  40. Garg KK, Prasad B, J. Environ. Chem. Eng., 4, 178, 2016
  41. Thiruvenkatachari R, Kwon TO, Moon IS, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 41, 1685, 2006
  42. Park TJ, Lim JS, Lee YW, Kim SH, J. Supercrit. Fluids, 26(3), 201, 2003
  43. Garg KK, Prasad B, J. Environ. Chem. Eng., 3, 1731, 2015
  44. Verma S, Prasad B, Mishra IM, J. Hazard. Toxic Radioact. Waste., 18(3), 040140, 2014
  45. Can OT, Bayramoglu M, Kobya M, Ind. Eng. Chem. Res., 42(14), 3391, 2003
  46. Kushwaha JP, Srivastava VC, Mall ID, Environ. Energy Eng., 57, 2589, 2010
  47. Kallel M, Belaid C, Boussahel R, Ksibi M, Montiel A, Elleuch B, J. Hazard. Mater., 163(2-3), 550, 2009
  48. Watts RJ, Foget MK, Kong SH, Teel AL, J. Hazard. Mater., 69, 229, 1999
  49. Nidheesh PV, Gandhimathi R, Desalination, 299, 1, 2012
  50. Nidheesh PV, Gandhimathi R, Environ. Sci. Pollut. Res., 21, 8585, 2014
  51. Lee H, Shoda M, J. Hazard. Mater., 153(3), 1314, 2008
  52. Badawy MI, Ali MEM, J. Hazard. Mater., 136(3), 961, 2006
  53. Oturan MA, Oturan N, Lahitte C, Trevin S, J. Electroanal. Chem., 507(1-2), 96, 2001
  54. Kurt U, Apaydin O, Gonullu MT, J. Hazard. Mater., 143(1-2), 33, 2007
  55. Narayanan TSNS, Magesh G, Rajendran N, Fresenius Environ. Bull., 12, 776, 2003
  56. Song G, Cao C, Chen SH, Corrosion Sci., 47, 323, 2005
  57. ASTM, D 3838-05, Philadelphia PA, United State of America (2011).
  58. Garg KK, Prasad B, J. Taiwan Inst. Chem. Eng., 60, 383, 2016