Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 854-865, 2017
Optimization of supercritical extraction of galegine from Galega officinalis L.:Neural network modeling and experimental optimization via response surface methodology
Supercritical CO2 extraction of galegine from Galega officinalis L. was carried out under different operating conditions of temperature (35-55 °C), pressure (10-30MPa), dynamic extraction time (30-150min), CO2 flow rate (0.5-2.5 mL/min) and constant static extraction time of 20 min. Design of experiment was by response surface methodology (RSM) using Minitab software 17. The response surface analysis accuracy was verified by the coefficient of determination (R2=93.4%) along with modified coefficient of determination (mod-R2=87.7%). The optimum operating conditions were found by using RSM modeling to be 42.8 °C, 22.7MPa, 141.5min and 2.15 mL/min, in which the maximum galegine extraction yield of 3.3932mg/g was obtained. Artificial neural network (ANN) using Levenberg-Marquardt backpropagation training function with six neurons in the hidden layer was implemented for the modeling of galegine extraction such that the coefficient of determination (R2) was 96.6%.
[References]
  1. Rates SMK, Toxicon, 39, 603, 2001
  2. Egamberdieva D, Berg G, Lindstrom K, Rasanen LA, Plant Soil, 369, 453, 2013
  3. Fukunaga T, Nishiya K, Takeya K, Itokawa H, Chem. Pharm. Bull., 35, 1610, 1987
  4. Rasekh HR, Nazari P, Kamli-Nejad M, Hosseinzadeh L, J. Ethnopharmacol., 116, 21, 2008
  5. Peiretti PG, Gai F, Feed Sci. Technol., 130, 257, 2006
  6. Witters LA, J. Clin. Invest., 108, 1105, 2001
  7. Palit P, Furman BL, Gray AI, J. Pharm. Pharmacol., 51, 1313, 1999
  8. Pundarikakshudu K, Patel JK, Bodar MS, Deans SG, J. Ethnopharmacol., 77, 111, 2001
  9. Trojan-Rodrigues M, Alves TLS, Soares GLG, Ritter MR, J. Ethnopharmacol., 139, 155, 2012
  10. Atanasov AT, Phytother. Res., 8, 314, 1994
  11. Mooney MH, Fogarty S, Stevenson C, Gallagher AM, Palit P, Hawley SA, Hardie DG, Coxon GD, Waigh RD, Tate RJ, Harvey AL, Br. J. Pharmacol., 153, 1669, 2008
  12. Huxtable CR, Dorling PR, Colegate SM, Aust. Vet. J., 70, 169, 1993
  13. Spasov V, Bulg. J. Vet. Med., 6, 203, 2003
  14. Wadkar KA, Magdum CS, Patil SS, Naikwade NS, J. Herb. Med. Tox., 2, 45, 2008
  15. Vermaak I, Viljoen AM, Hamman JH, Nat. Prod. Rep., 28, 1493, 2011
  16. Fabricant DS, Nikolic D, Lankin DC, Chen SN, Jaki BU, Krunic A, van Breemen RB, Fong HH, Farnsworth NR, Pauli GF, J. Nat. Prod., 68, 1266, 2005
  17. Gonzalez Andres F, Redondo PA, Pescador R, Urbano B, N.Z. J. Agric. Res., 47, 233, 2004
  18. Azhunova TA, Markizov PV, Pharm. Chem. J., 28, 410, 1994
  19. Kim WJ, Choi CH, Moon SH, Korean J. Chem. Eng., 19(4), 617, 2002
  20. Ghosh PK, Bhattacharjee P, Korean J. Chem. Eng., 33(5), 1681, 2016
  21. Tian L, Zhou M, Pan X, Xiao G, Liu Y, Korean J. Chem. Eng., 32(8), 1649, 2015
  22. Kasirajan R, Pandian S, Tamilarasan S, Sahadevan R, Korean J. Chem. Eng., 31(3), 509, 2014
  23. Ferdosh S, Sarker MZI, Rahman NNNA, Akand MJH, Ghafoor K, Awang MB, Kadir MOA, Korean J. Chem. Eng., 30(7), 1466, 2013
  24. Hedayati A, Ghoreishi SM, J. Supercrit. Fluids, 100, 209, 2015
  25. Ghoreishi SM, Mortazavi SM, Hedayati A, Chem. Prod. Process Model., 10, 243, 2015
  26. Ghoreishi SM, Hedayati A, Kordnejad M, J. Supercrit. Fluids, 111, 162, 2016
  27. Ghoreishi SM, Hedayati A, Ansari K, J. Supercrit. Fluids, 117, 131, 2016
  28. Ali-Nehari A, Chun BS, Korean J. Chem. Eng., 29(7), 918, 2012
  29. Ali-Nehari A, Kim SB, Lee YB, Lee H, Chun BS, Korean J. Chem. Eng., 29(3), 329, 2012
  30. Ghoreishi SM, Hedayati A, Mohammadi S, J. Supercrit. Fluids, 113, 53, 2016
  31. Kang KY, Ahn DH, Wilkinson GT, Chun BS, Korean J. Chem. Eng., 22(3), 399, 2005
  32. Lee CH, Lee YW, Kim JD, Row KH, Korean J. Chem. Eng., 18(3), 352, 2001
  33. Hedayati A, Ghoreishi SM, Chem. Prod. Process Model., 11, 217, 2016
  34. Jafari AJ, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A, Korean J. Chem. Eng., 33, 2878, 2015
  35. Chu YH, Han IS, Han C, Korean J. Chem. Eng., 19(4), 535, 2002
  36. Sedighi M, Keyvanloo K, Towfighi J, Korean J. Chem. Eng., 27(4), 1170, 2010
  37. Zarenezhad B, Aminian A, Korean J. Chem. Eng., 28(5), 1286, 2011
  38. Shokir EMEM, Al-Homadhi ES, Al-Mahdy O, El-Midany AAH, Korean J. Chem. Eng., 31(8), 1496, 2014
  39. Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364, 2009
  40. Moradi M, Ghanbari F, Manshouri M, Angali KA, Korean J. Chem. Eng., 33(2), 539, 2016
  41. Cho SK, Kim DH, Yun YM, Jung KW, Shin HS, Oh SE, Korean J. Chem. Eng., 30(7), 1493, 2013
  42. Goleroudbary MG, Ghoreishi SM, J. Supercrit. Fluids, 108, 136, 2016
  43. Khuri AI, Mukhopadhyay S, Wiley Interdiscip. Rev. Comput. Stat., 2, 128, 2010
  44. Su H, Wang X, Kim YG, Kim SB, Seo YG, Kim JS, Kim CJ, Korean J. Chem. Eng., 31(11), 2070, 2014
  45. Bashipour F, Ghoreishi SM, J. Supercrit. Fluids, 95, 348, 2014
  46. Wang SC, Artificial neural network. In Interdisciplinary Computing in Java Programming, Springer US, 81-100 (2003).
  47. Himmelblau DM, Korean J. Chem. Eng., 17(4), 373, 2000
  48. Ghoreishi SM, Hedayati A, Mousavi SO, J. Supercrit. Fluids, 112, 57, 2016
  49. Khadom AA, Korean J. Chem. Eng., 30(12), 2197, 2013
  50. Valderrama JO, Munoz JM, Rojas RE, Korean J. Chem. Eng., 28(6), 1451, 2011
  51. Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661, 2014
  52. Fausett L, Fundamentals of neural networks: architectures, algorithms, and application, Prentice-Hall, Inc. (1994).
  53. Basheer IA, Hajmeer M, J. Microbiol. Methods, 43, 3, 2000
  54. Kurkova V, Neural Net., 5, 501, 1992
  55. Satya EJ, Chandrakar N, Korean J. Chem. Eng., 33(4), 1318, 2016
  56. Babaei AA, Khataee A, Ahmadpour E, Sheydaei M, Kakavandi B, Alaee Z, Korean J. Chem. Eng., 33(4), 1352, 2016