Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 574-579, 2017
Comparative experimental study of ethanol-air premixed laminar combustion characteristics by laser induced spark and electric spark ignition
An experimental study of laminar combustion characteristics of ethanol-air premixed mixtures was conducted with different ignition methods, including laser induced spark ignition (LISI) and electric spark ignition (SI) at an initial condition of 358 K temperature and 0.1 MPa pressure. Flame propagation with the two different ignition methods was analyzed and discussed. The laminar flame speed was extrapolated with a nonlinear extrapolation method. Results indicate that the laminar speed of ethanol-air mixtures with LISI is faster than that with SI at lean mixtures, but slower at stoichiometric and rich mixtures. The peak values of the laminar burning velocity for SI and LISI with nonlinear extrapolation are 50.1 cm/s and 47.6 cm/s at the equivalence ratio of 1.1, respectively. Laser-induced spark ignition is able to ignite leaner ethanol-air mixtures.
[References]
  1. Meng X, Huang H, Zhang Q, Li C, Cui Q, Korean J. Chem. Eng., 33(4), 1239, 2016
  2. Qu X, Gong CM, Liu JJ, Cui FY, Liu FH, Fuel, 158, 166, 2015
  3. Ambros WM, Lanzanova TDM, Fagundez JLS, Sari RL, Pinheiro DK, Martins MES, Salau NPG, Fuel, 158, 270, 2015
  4. Jeong JS, Jang BU, Kim YR, Chung BW, Choi GW, Korean J. Chem. Eng., 26(5), 1308, 2009
  5. da Silva R, Cataluna R, de Menezes EW, Samios D, Piatnicki CMS, Fuel, 84(7-8), 951, 2005
  6. Dirrenberger P, Glaude PA, Bounaceur R, Le Gall H, da Cruz AP, Konnov AA, Battin-Leclerc F, Fuel, 115, 162, 2014
  7. Costa RC, Sodre JR, Fuel, 89(2), 287, 2010
  8. Morsy MH, Renew. Sust. Energ. Rev., 16, 4849, 2012
  9. Bradley D, Sheppard CGW, Suardjaja IM, Woolley R, Combust. Flame, 138(1-2), 55, 2004
  10. Srivastava DK, Weinrotter M, Iskra K, Ayarwal AK, Wintner E, Int. J. Hydrog. Energy, 34(5), 2475, 2009
  11. Tihay V, Gillard P, Blanc D, J. Hazard. Mater., 209-210, 372, 2012
  12. Boker D, Bruggemann D, Int. J. Hydrog. Energy, 36(22), 14759, 2011
  13. Weinrotter M, Kopecek H, Wintner E, Lackner M, Winter F, Int. J. Hydrog. Energy, 30(3), 319, 2005
  14. Ma JX, Alexander DR, Poulain DE, Combust. Flame, 112(4), 492, 1998
  15. Rahman KM, Kawahara N, Tsuboi K, Tomita E, Fuel, 165, 331, 2016
  16. Xu C, Fang D, Luo Q, Ma J, Xie Y, Optics Laser Technology, 64, 343, 2014
  17. Tahtouh T, Halter F, Mounaim-Rousselle C, Combust. Flame, 156(9), 1735, 2009
  18. Varea E, Modica V, Vandel A, Renou B, Combust. Flame, 159(2), 577, 2012
  19. Kelley AP, Law CK, Combust. Flame, 156(9), 1844, 2009
  20. Egolfopoulos FN, Hansen N, Ju Y, Kohse-Hoinghaus K, Law CK, Qi F, Prog. Energy Combust. Sci., 43, 36, 2014
  21. Broustail G, Halter F, Seers P, Moreac G, Mounaim-Rousselle C, Fuel, 106, 310, 2013
  22. Phuoc TX, Opt. Laser. Eng., 44, 351, 2006
  23. Chen Z, Combust. Flame, 162(6), 2442, 2015
  24. Dayma G, Halter F, Foucher F, Mounaim-Rousselle C, Dagaut P, Energy Fuels, 26(11), 6669, 2012
  25. Bradley D, Lawes M, Mansour MS, Combust. Flame, 156(7), 1462, 2009
  26. Liao SY, Jiang DM, Huang ZH, Zeng K, Cheng Q, Appl. Therm. Eng., 27, 374, 2007
  27. Sileghem L, Alekseev VA, Vancoillie J, Nilsson EJK, Verhelst S, Konnov AA, Fuel, 115, 32, 2014
  28. Chen Z, Combust. Flame, 157(12), 2267, 2010
  29. Yu H, Han W, Santner J, Gou XL, Sohn CH, Ju YG, Chen Z, Combust. Flame, 161(11), 2815, 2014