Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 476-483, 2017
Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis
Novel, visible light driven CNTs-TiO2@AgI hybrid materials were synthesized by a simple solvothermaldissolution-precipitation method, during which the acid vapor treated carbon nanotubes (CNTs) as template, AgI as sensitizer and TiO2 as the bridge unified them to form a ternary composite. The morphology and chemical components of as-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS characterizations indicated that anatase TiO2 and crystal AgI co-existed in the composite. HRTEM demonstrated CNTs were decorated with well-dispersed AgI and TiO2 nanoparticles (NPs), and TiO2 had an intimate connection with both AgI and CNTs. Diffusive reflectance UV-vis spectroscopy of CNTs-TiO2@AgI nanocomposite was extended to the whole UV-visible region due to adding of CNTs and AgI NPs. Degradation of Rhodamine B (RhB) polluted water using CNTs-TiO2@AgI NPs was carried out under visible light irradiation, and it showed higher degradation efficiency than CNTs-TiO2, TiO2@AgI, and CNTs@AgI NPs. The primary reason for the enhanced photocatalytic property was attributed to the synergic effect in CNTs-TiO2@AgI, which included the good adsorption ability and electrical conductivity of CNTs as well as the intimate connection and hetero-junctions among AgI, TiO2, and CNTs. Meanwhile, the as-prepared hybrid materials can be easily separated and reclaimed from the liquid phase, and the recycling tests indicated CNTs-TiO2@AgI had renewable performance.
[References]
  1. Fujishima A, Zhang XT, Tryk DA, Surf. Sci. Rep., 63, 515, 2008
  2. Di Paola A, Garcia-Lopez E, Marci G, Palmisano L, J. Hazard. Mater., 211, 3, 2012
  3. Ahmadi M, Amiri P, Amiri N, Korean J. Chem. Eng., 32(7), 1327, 2015
  4. Zhang H, Fan X, Quan X, Chen S, Yu H, Environ. Sci. Technol., 45, 5731, 2011
  5. Guan ML, Xiao C, Zhang J, Fan SJ, An R, Cheng QM, Xie JF, Zhou M, Ye BJ, Xie Y, J. Am. Chem. Soc., 135(28), 10411, 2013
  6. Xiong ZG, Zhao XS, J. Am. Chem. Soc., 134(13), 5754, 2012
  7. Karunakaran C, Kalaivani S, Vinayagamoorthy P, Mater. Lett., 122, 21, 2014
  8. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T, J. Am. Chem. Soc., 134(14), 6309, 2012
  9. Yadav HM, Kim JS, Pawar SH, Korean J. Chem. Eng., 33(7), 1989, 2016
  10. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  11. Fujishima A, Honda K, Nature, 238, 37, 1972
  12. Wang Q, Shi XD, Liu EQ, Xu JJ, Crittenden JC, Zhang Y, Cong YQ, Ind. Eng. Chem. Res., 55(17), 4897, 2016
  13. An C, Jiang W, Wang J, Wang S, Ma Z, Li Y, J. Chem. Soc.-Dalton Trans., 42, 8796, 2013
  14. Chen XB, Burda C, J. Am. Chem. Soc., 130(15), 5018, 2008
  15. Ma YF, Zhang JL, Tian BZ, Chen F, Wang LZ, J. Hazard. Mater., 182(1-3), 386, 2010
  16. Fan WQ, Lai QH, Zhang QH, Wang Y, J. Phys. Chem. C, 115, 10694, 2011
  17. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA, Environ. Sci. Technol., 42, 4952, 2008
  18. Kim S, Lim SK, Appl. Catal. B: Environ., 84(1-2), 16, 2008
  19. Yu DD, Bai J, Liang HO, Ma TF, Li CP, J. Mol. Catal. A-Chem., 420, 1, 2016
  20. Ullah K, Ullah A, Aldalbahi A, Chung JD, Oh WC, J. Mol. Catal. A-Chem., 410, 242, 2015
  21. Yen CY, Lin YF, Hung CH, Tseng YH, Ma CC, Chang MC, Shao H, Nanotechnology, 19, 219, 2008
  22. Yu JG, Ma TT, Liu SW, Phys. Chem. Chem. Phys., 13, 3491, 2011
  23. Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S, Acs Appl. Mater. Inter., 1, 2030, 2009
  24. Kongkanand A, Dominguez RM, Kamat PV, Nano Lett., 7, 676, 2007
  25. Lee WJ, Lee JM, Kochuveedu ST, Han TH, Jeong HY, Park M, Yun JM, Kwon J, No K, Kim DH, Kim SO, Acs Nano, 6, 935, 2012
  26. Hsu CY, Lien DH, Lu SY, Chen CY, Kang CF, Chueh YL, Hsu WK, He JH, Acs Nano, 6, 6687, 2012
  27. Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P, J. Am. Chem. Soc., 134(28), 11760, 2012
  28. Wang XW, Yin LC, Liu G, Chem. Commun., 50, 3460, 2014
  29. Wang HL, Robinson JT, Diankov G, Dai HJ, J. Am. Chem. Soc., 132(10), 3270, 2010
  30. Xiang QJ, Yu JG, Jaroniec M, Chem. Soc. Rev., 41, 782, 2012
  31. Huang LH, Wang HJ, Liu YL, Jiao ZB, Shao ZB, Prog. Chem., 22, 867, 2010
  32. Zhang H, Lv XJ, Li YM, Wang Y, Li JH, Acs Nano, 4, 380, 2010
  33. Liu G, Yu JC, Lu GQ, Cheng HM, Chem. Commun., 47, 6763, 2011
  34. Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233, 2009
  35. Zhou KF, Zhu YH, Yang XL, Jiang X, Li CZ, New J. Chem., 35, 353, 2011
  36. Hochbaum AI, Yang PD, Chem. Rev., 110(1), 527, 2010
  37. Hu AG, Liu S, Lin WB, Rsc. Adv., 2, 2576, 2012
  38. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB, J. Am. Chem. Soc., 134(8), 3659, 2012
  39. Wang H, Gao J, Guo TQ, Wang RM, Guo L, Liu Y, Li JH, Chem. Commun., 48, 275, 2012
  40. Abou Asi M, He C, Su MH, Xia DH, Lin L, Deng HQ, Xiong Y, Qiu RL, Li XZ, Catal. Today, 175(1), 256, 2011
  41. Vinoth R, Karthik P, Muthamizhchelvan C, Neppolian B, Ashokkumar M, Phys. Chem. Chem. Phys., 18, 5179, 2016
  42. Liu HS, Wang YH, Li CC, Tai CY, Chem. Eng. J., 183, 466, 2012
  43. Makiura R, Yonemura T, Yamada T, Yamauchi M, Ikeda R, Kitagawa H, Kato K, Takata M, Nat. Mater., 8(6), 476, 2009
  44. Wang Q, Shi XD, Xu JJ, Crittenden JC, Liu EQ, Zhang Y, Cong YQ, J. Hazard. Mater., 307, 213, 2016
  45. Li YZ, Zhang H, Guo ZM, Han JJ, Zhao XJ, Zhao QN, Kim SJ, Langmuir, 24(15), 8351, 2008
  46. Hu C, Hu XX, Wang LS, Qu JH, Wang AM, Environ. Sci. Technol., 40, 7903, 2006
  47. Wu DY, Long MC, Surf. Coat. Technol., 206, 1175, 2011
  48. Li YZ, Zhang H, Guo ZM, Han JJ, Zhao XJ, Zhao QN, Kim SJ, Langmuir, 24(15), 8351, 2008
  49. Shi H, Chen J, Li G, Nie X, Zhao H, Wong PK, An T, ACS Appl. Mater. Interf., 5, 6959, 2013
  50. Xu YG, Huang SQ, Ji HY, Jing LQ, He MQ, Xu H, Zhang Q, Li HM, Rsc. Adv., 6, 6905, 2016
  51. Yang LX, Luo SL, Li Y, Xiao Y, Kang Q, Cai QY, Environ. Sci. Technol., 44, 7641, 2010
  52. Jiang J, Zhang X, Sun PB, Zhang LZ, J. Phys. Chem. C, 115, 20555, 2011
  53. An Y, Hou J, Liu ZY, Peng BH, Mater. Chem. Phys., 148(1-2), 387, 2014
  54. Ming J, Wu YQ, Yu YC, Zhao FY, Chem. Commun., 47, 5223, 2011
  55. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K, Nature, 367(6463), 519, 1994
  56. Xu H, Yan J, Xu YG, Song YH, Li HM, Xia JX, Huang CJ, Wan HL, Appl. Catal. B: Environ., 129, 182, 2013
  57. Sun W, Li YZ, Shi WQ, Zhao XJ, Fang PF, J. Mater. Chem., 21, 9263, 2011
  58. Cai L, Xu T, Shen JY, Xiang WX, Mater. Sci. Semicond. Process, 37, 19, 2015
  59. An Y, Yang L, Hou J, Liu ZY, Peng BH, Opt. Mater., 36, 1390, 2014
  60. Reddy DA, Choi J, Lee S, Ma R, Kim TK, Rsc. Adv., 5, 67394, 2015
  61. Shi HX, Chen JY, Li GY, Nie X, Zhao HJ, Wong PK, An TC, Acs Appl. Mater. Inter., 5, 6959, 2013
  62. Yi JH, Huang LL, Wang HJ, Yu H, Peng F, J. Hazard. Mater., 284, 207, 2015
  63. Liu JX, Luan YL, An CH, Zhang J, Wang DS, Li YD, Chemcatchem, 7, 2918, 2015
  64. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin YD, Energy Environ. Sci., 5, 6321, 2012
  65. Liu HY, Joo JB, Dahl M, Fu LS, Zeng ZZ, Yin YD, Energy Environ. Sci., 8, 286, 2015
  66. Fan ZH, Meng FM, Zhang M, Wu ZY, Sun ZQ, Li AX, Appl. Surf. Sci., 360, 298, 2016