Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 320-327, 2017
Effect of surface composition of Fe catalyst on the activity for the production of high-calorie synthetic natural gas (SNG)
An Fe2O3 catalyst was applied to the production of high-calorie synthetic natural gas (SNG). With this catalyst, the product distribution changed as the surface composition of the Fe2O3 catalyst changed. The effect of these changes on the catalytic activity was investigated. The active phases of the Fe2O3 catalyst were a mixture of low-carbon FeCx and Fe3C, which was maintained for 10 h, accompanied by the regeneration of Fe3O4. The surface Fe concentration increased after 10 h reaction, and this increased the CO conversion. In addition, the amounts of adsorbed C2H4 and C3H6 increased, which resulted in an increase in carbon chain growth. The surface concentration of oxygen also increased due to the regeneration of Fe3O4, thus reducing the C3H6 adsorption strength; in contrast, C2H4 adsorption increased, resulting in an enhanced paraffin-to-olefin (p/o) ratio for C2 hydrocarbons and reduced p/o ratio for C3 hydrocarbons.
[References]
  1. Statistical Review of World Energy, British Petroleum (2015).
  2. The Paris Agreement, in: The Conference of the Parties Twentyfirst Session (COP 21), United Nations Framework Convention on Climate Change (UNFCCC) (2015).
  3. World Energy Outlook 2015, International Energy Agency (2015).
  4. Lower and higher heating values of gas, liquid and solid fuels, Biomass Energy Data Book, U.S. Department of Energy, Oak Ridge National Laboratory (2011).
  5. NIST Chemistry Webbook, National Institute of Standards and Technology, Washington, D.C. .
  6. Kume T, Ohashi T, Gas quality variation impact on gas appliances in Japan: A status report, 25th World Gas Conference, Kuala Lumpur, Malaysia (2012).
  7. Nishiyama Y, Energy in Japan, Credit Suisse (2012).
  8. Heat content of natural gas consumed, U.S. Energy Information Administration (EIA).
  9. Korchemkin M, Gazprom unlikely to win a price war, East European Gas Analysis (EEGA) (2016).
  10. Scale Does Matter, Gazprom (2012).
  11. Koh CA, Chem. Soc. Rev., 31, 157, 2002
  12. Zhang QW, Li XH, Asami K, Asaoka S, Fujimoto K, Catal. Today, 104(1), 30, 2005
  13. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K, Catal. Lett., 102(1-2), 51, 2005
  14. Ge QJ, Li XH, Kaneko H, Fujimoto K, J. Mol. Catal. A-Chem., 278(1-2), 215, 2007
  15. Ge OJ, Lian Y, Yuan XD, Li XH, Fujimoto K, Catal. Commun., 9, 256, 2008
  16. Ge QJ, Tomonobu T, Fujimoto K, Li XH, Catal. Commun., 9, 1775, 2008
  17. Ma XG, Ge QJ, Fang CY, Ma JG, Xu HY, Fuel, 90(5), 2051, 2011
  18. Zhang QW, Ma T, Zhao M, Tomonobu T, Li XH, Catal. Sci. Technol., 6, 1523, 2016
  19. Li YW, He DH, Cheng ZX, Su CL, Li JR, Zhu QM, J. Mol. Catal. A-Chem., 175(1-2), 267, 2001
  20. Li YW, He DH, Yuan YB, Cheng ZX, Zhu QM, Fuel, 81(11-12), 1611, 2002
  21. Li YW, He DH, Zhu QM, Zhang X, Xu BQ, J. Catal., 221(2), 584, 2004
  22. Li YW, He DH, Zhu ZH, Zhu QM, Xu BQ, Appl. Catal. A: Gen., 319, 119, 2007
  23. Zhu ZH, He DH, Fuel, 87(10-11), 2229, 2008
  24. Ge SH, He DH, Li ZP, Catal. Lett., 126(1-2), 193, 2008
  25. Zhang RJ, Liu HM, He DH, Catal. Commun., 26, 244, 2012
  26. Galvis HMT, de Jong KP, ACS Catal., 3, 2130, 2013
  27. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP, Science, 335(6070), 835, 2012
  28. Galvis HMT, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP, J. Am. Chem. Soc., 134(39), 16207, 2012
  29. Kang SH, Bae JW, Prasad PSS, Jun KW, Catal. Lett., 125(3-4), 264, 2008
  30. Dry ME, Stud. Surf. Sci. Catal., 533, 2004
  31. Enger BC, Holmen A, Catal. Rev.-Sci. Eng., 54(4), 437, 2012
  32. Inui T, Sakamoto A, Takeguchi T, Ishigaki Y, Ind. Eng. Chem. Res., 28, 427, 1989
  33. Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220, 2015
  34. Lee YH, Lee DW, Kim H, Choi HS, Lee KY, Fuel, 159, 259, 2015
  35. Gnanamani MK, Hamdeh HH, Shafer WD, Sparks DE, Davis BH, Catal. Lett., 143(11), 1123, 2013
  36. Ding MY, Yang Y, Wu BS, Xu J, Zhang CH, Xiang HW, Li YW, J. Mol. Catal. A-Chem., 303(1-2), 65, 2009
  37. de Smit E, Weckhuysen BM, Chem. Soc. Rev., 37, 2758, 2008
  38. Kolis JW, Holt EM, Shriver DF, J. Am. Chem. Soc., 105, 7307, 1983
  39. Wu WC, Wu ZL, Liang CH, Chen XW, Ying PL, Li C, J. Phys. Chem. B, 107(29), 7088, 2003
  40. Liu YF, Luo JJ, Girleanu M, Ersen O, Pham-Huu C, Meny C, J. Catal., 318, 179, 2014
  41. Logdberg S, Lualdi M, Jaras S, Walmsley JC, Blekkan EA, Rytter E, Holmen A, J. Catal., 274(1), 84, 2010
  42. Lee YH, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 425, 190, 2016
  43. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ, NIST X-ray Photoelectron Spectroscopy Database - NIST Standard Reference Database 20, National Institute of Standards and Technology (NIST) (2012).
  44. Jiang F, Zeng L, Li SR, Liu G, Wang SP, Gong JL, ACS Catal., 5, 438, 2015
  45. Ozbek MO, Niemantsverdriet JW, J. Catal., 317, 158, 2014
  46. Kuipers EW, Vinkenburg IH, Oosterbeek H, J. Catal., 152(1), 137, 1995
  47. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255, 1999