Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 314-319, 2017
X-ray absorption spectroscopies of Mg-Al-Ni hydrotalcite like compound for explaining the generation of surface acid sites
Hydrotalcite-like compound containing metal cations such as Mg2+, Al3+ and Ni2+ was characterized using Ni K-edge EXAFS and in situ Ni K-edge XANES techniques for clarifying its bonding environment around Ni2+ sites and structure changes during calcination from room temperature to 550 °C, respectively. At the fixed molar ratio of Mg/Ni/Al of 2/1/1, the results obtained from EXAFS analysis showed a slight blue shift before and after the calcination at 550 °C and a reduction in white line peak; the best fits of the two samples revealed tiny change in coordination number about 7 for Ni-O path but considerable difference for Ni-Mg(Al) path from about 4.5 to 9.5, confirming a modification from brucite like to mixed oxide structure. On the other hand, bond distances of the Ni-O and Ni-Mg paths nearly fixed at about 2.06 Å to 3.0 Å reflected stability of the cationic bond order on each plane, but partial collapse and decomposition of the interlayer formed by water molecules and anion CO3 2- after the calcination. Linear combination fit extracted from the in situ Ni K-edge XANES also confirmed the changes along with the calcination such as slow and fast decreases of brucite fraction at 150 °C and 330 °C, respectively, in corresponding to the mixed oxide fraction increases. The achieved bonding structures were also applied to explain acid-base occurrence of the hydrotalcite-like material, especially the acid sites generated by different static charges along with the bonds. The explanation was illustrated by NH3-TPD method.
[References]
  1. Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173, 1991
  2. Wang Q, Huang TH, Guo Z, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A, Appl. Clay Sci., 55, 18, 1991
  3. Albertazzi S, Basile F, Vaccari A, Interface Sci. Technol., 1, 496, 2004
  4. Casenave S, Martinez H, Guimon C, Auroux A, Hulea V, Cordoneanu A, Dumitriu E, Thermochim. Acta, 379(1-2), 85, 2001
  5. Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77, 2006
  6. Khitous M, Salem Z, Halliche D, Korean J. Chem. Eng., 33(2), 638, 2016
  7. Kikhtyanin O, Hora L, Kubicka D, Catal. Commun., 58, 89, 2015
  8. Lucredio AF, Bellido JDA, Assaf EM, Appl. Catal. A: Gen., 388(1-2), 77, 2010
  9. Romero A, Jobbagy M, Laborde M, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 470, 398, 2014
  10. Yu J, Li JY, Wei HL, Zheng JW, Su HQ, Wang XJ, J. Mol. Catal. A-Chem., 395, 128, 2014
  11. Zhang J, Wu S, Liu Y, Li B, Catal. Commun., 35, 23, 2013
  12. Na JG, Yi BE, Kim JN, Yi KB, Park SY, Park JH, Kim JN, Ko CH, Catal. Today, 156(1-2), 44, 2010
  13. Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH, Catal. Today, 185(1), 313, 2012
  14. Roh HS, Eum IH, Jeong DW, Yi BE, Na JG, Ko CH, Catal. Today, 164(1), 457, 2011
  15. Nguyen HKD, Pham VV, Do HT, Catal. Lett., DOI:10.1007/s10562-016-1873-8., 146, 2016
  16. Gac W, Appl. Surf. Sci., 257(7), 2875, 2011
  17. Tanabe K, Solid acids and bases: Their catalytic properties, Kodansha Ltd. (1970).
  18. Nguyen HKD, Nguyen TD, J. Porous Mat., DOI:10.1007/s10934-016-0279-8., 2016
  19. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E, J. Phys. Chem., 100(20), 8527, 1996
  20. Rehr J, Kas J, Prange M, Sorini A, Takimoto Y, Vila F, Comptes Rendus Physique, 10, 548, 2009
  21. Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X, Environ. Sci. Technol., 45, 7718, 2011
  22. Downs RT, Bartelmehs KL, Gibbs GV, American Mineralogist, 78, 1104, 1993
  23. Daza CE, Gallego J, Mondragon F, Moreno S, Molina R, Fuel, 89(3), 592, 2010
  24. Obalova L, Valaskova M, Kovanda F, Lacny Z, Kolinova K, Chem. Papers, 58, 33, 2004
  25. Tanabe K, Misono M, Ono Y, Hattori H, Studies in Surface Science and Catalysis, 51 (1989).