Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 298-304, 2017
Synthesis and characterization of a K/K2CO3-based solid superbase as a catalyst in propylene dimerization
A novel solid superbase 3%K/K2CO3 was prepared by loading metallic potassium on K2CO3. The optimized preparation conditions included a loading time of 1.5 h, loading temperature of 150 °C, loading amount of 3wt% and average carrier size of 120 μm. Under the optimum conditions, the conversion of propylene is about 60% with the selectivity of dimers 98.5% and the selectivity of 4MP1 86.3%. In addition, the superbase 3%K/K2CO3 has a base strength of H-≥37, and the concentration of basic sites of H-≥35 is approximately 0.3mmol·g-1 CAT. The microcrystal of metallic potassium was determined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was assumed that the oxygen species, which are adjacent to lattice defects, such as the crystalline corners, edges and vacancies of metallic potassium microcrystals, constituted the superbasic sites.
[References]
  1. Wang YR, Jing ZH, China Synthetic Resin and Plastics, 27, 71, 2010
  2. Dahal P, Kim JH, Kim YC, Korean J. Chem. Eng., 31(1), 1, 2014
  3. Wilkes JB, in Proceedings of the 7th World Petroleum Congress, 5, 399 (1967).
  4. Yoshio O, Hideshi H, Solid base catalysis, Springer, Berlin Heidelberg (2011).
  5. Wei YD, Zhang SD, Li GS, Chinese J. Catal., 32, 891, 2011
  6. Suzukamo G, Fukao M, Minobe M, Chem. Lett., 16, 585, 1987
  7. Tanaka K, Yanashima H, Minobe M, Suzukamo G, J. Appl. Surf. Sci., 121-122, 461, 1997
  8. Matsuhashi H, Klabunde KJ, Langmuir, 13(10), 2600, 1997
  9. Matsuhashi H, Oikawa M, Arata K, Langmuir, 16(21), 8201, 2000
  10. Bota RM, Houthoofd K, Grobet PJ, Jacobs PA, Catal. Today, 152(1-4), 99, 2010
  11. Martens LRM, Grobet PJ, Vermeiren WJM, Jacob PA, Stud. Surf. Sci. Catal., 28, 935, 1986
  12. Yasuo N, Yusaku A, Ryoko K, J. Phys. Chem. Solids, 73, 1538, 2012
  13. Takehito N, Hajime T, Atsufumi H, Phys. Rev. B, 88, 1, 2013
  14. Schramm RM, US Patent, 2,968,488 (1961).
  15. Fuchs JM, Gallot M, Saussine L, European Patent, 0,291,411 (1992).
  16. Wilkes JB, Organ. Chem., 32, 3231, 1967
  17. Wilkes JB, US Patent, 3,175,020 (1965).
  18. Wilkes JB, US Patent, 3,216,947 (1965).
  19. Hambling JK, Chemistry in Britain, 5, 354, 1969
  20. Hambling JK, Northcott RP, Rubber and Plastics, 49, 224, 1968
  21. Hambling JK, UK Patent, 933,253 (1961).
  22. Drake CA, US Patent, 4,595,787 (1986).
  23. Drake CA, US Patent, 5,057,639 (1986).
  24. Yuan ZS, Refining and Chemical Industry, 12, 10, 2001
  25. Mitsuo MK, US Patent, 4,388,480 (1983).
  26. Zhang MS, Ke L, Yang J, Feng Y, He LM, Petrochem. Technol., 1, 737, 2002
  27. Shaw AW, Bitter CW, Organ. Chem., 30, 3286, 1965
  28. Ansheles VR, Pis’man II, Russ. Chem. Rev., 46, 620, 1977
  29. Anderson JR, Structure of metallic catalysts, Academic Press, New York (1975).
  30. Xie YC, Yang NF, Liu YJ, Tang YQ, Sci. China Chem., 26, 337, 1983
  31. Lin D, Chin. J. Inorg. Chem., 2, 250, 2000