Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 287-297, 2017
Dynamic matrix control applied on propane-mixed refrigerant liquefaction process
This study proposes a dynamic matrix control strategy that produces control input sequences which are more robust and reduce power consumption than conventional proportional-integral (PI) controllers when applied to the C3MR liquefaction process. First, a rigorous process dynamic model was constructed in Aspen HYSYS Dynamics 7.3 and MATLAB 2014a which calculates dynamic responses for two different scenarios of unmeasured step disturbances increasing the load of liquefaction energy. Then, a DMC module including the manipulation of the compressor speed was formulated. The simulations using the proposed DMC module demonstrate that the multivariable optimal control increases the energy efficiency and robustness of a complex liquefaction cycle process.
[References]
  1. Azzarello S, Energy price spread: Natural gas vs. crude oil in the US, Market Insights, CME Group (2014).
  2. Smil V, Natural gas: fuel for the 21st century, West Sussex: John Wiley & Sons, Inc. (2015).
  3. Burns D, McLinn J, Porter M, Navigating Oil Price Volatility, Chemical Engineering Progress (CEP), AIChE (2016).
  4. Mokhatab S, Mak JY, Valappil JV, Wood DA, Handbook of Liquefied Natural Gas, Gulf Professional Publishing (2014).
  5. Wang Q, Li R, Renew. Sust. Energ. Rev., 54, 925, 2016
  6. ExxonMobil, The outlook for energy: a view to 2040 (2013).
  7. ExxonMobil, The outlook for energy: a view to 2040 (2015).
  8. Hwang J, Lee KY, Comput. Chem. Eng., 63, 1, 2014
  9. Faber F, Resweber LR, Floating LNG solutions from the drawing board to reality, Offshore Technology Conference, Houston, Texas (2002).
  10. Wood D, Mokhatab S, Economides MJ, Offshore natural gas liquefaction process and development issues, SPE Annual Technology Conference and Exhibition, Anaheim, California (2007).
  11. Zhao WH, Yang JM, Hu ZQ, Wei YF, Ocean Eng., 38, 14, 2011
  12. Xavier JR, Nanjundan S, Rajendran N, Ind. Eng. Chem. Res., 51(1), 30, 2012
  13. Won W, Lee SK, Choi K, Kwon Y, Korean J. Chem. Eng., 31, 5, 2014
  14. Husnil YA, Yeo G, Lee M, Chem. Eng. Res. Des., 92, 4, 2014
  15. Prett DM, Ramaker BL, Cutler CR, US Patent, 4,349,869 (1982).
  16. Garcia CE, Morshedi AM, Chem. Eng. Commun., 46, 73, 1986
  17. Garcia CE, Prett DM, Morari M, Automatica, 25, 3, 1989
  18. Poe WA, Mokhatab S, Hydrocarb. Process., 86, 6, 2007
  19. Sturm W, Parra-Calvache M, Chantant F, van Opstal J, Unlocking the potential of modern control and optimization strategies in LNG production, 1st Annual Gas Processing Symposium (2009).
  20. Foss B, Control Eng. Practice, 20, 10, 2012
  21. Mokhatab S, Poe WA, Handbook of Natural Gas Transmission and Processing, Second Ed., Gulf Professional Publishing (2012).
  22. den Bakker K, A step change in LNG operations through advanced process control, 23rd World Gas Conference, Amsterdam (2006).
  23. Kim HJ, Park CC, Lee JY, Lee CS, Kim MH, J. Mechanical Sci. Technol., 30, 4, 2016
  24. Mandler JA, Brochu PA, Hamilton JR, US Patent, 5,791,160 (1998).
  25. Husnil YA, Lee M, AIChE J., 60, 7, 2014
  26. Helgestad D, Modelling and optimization of the C3MR process for liquefaction of natural gas, Norwegian University of Science and Technology, NTNU (2009).
  27. Alabdulkarem A, Mortazavi A, Hwang Y, Radermacher R, Rogers P, Appl. Therm. Eng., 31, 6, 2011
  28. Robinson DB, Peng DY, Chung SY, Fluid Phase Equilib., 24, 1, 1985
  29. Vetere A, Fluid Phase Equilib., 106(1-2), 1, 1995
  30. Li C, Jia W, Wu X, Application of Lee-Kesler equation of state to calculating compressibility factors of high pressure condensate gas, Energy Procedia 14 (2012).
  31. Rao YVC, Chemical Engineering Thermodynamics, Universities Press (1997).
  32. Aspen Technology, Inc., Aspen physical property system: Physical property methods V7.3 (2011).
  33. Jensen JB, Skogestad S, Ind. Eng. Chem. Res., 48, 14, 2009
  34. Husnil YA, Lee M, J. Chem. Eng. Jpn., 47, 8, 2014
  35. Perkins JD, Interactions between process design and process control, Pergamon Press (1992).
  36. Bland MJ, Optimisation of an ammonia synthesis loop, Norwegian University of Science and Technology, NTNU (2015).
  37. Seborg DE, Edgar TF, Mellichamp DA, Doyle FJ III, Process Dynamics and Control, 3rd Ed., Wiley (2010).
  38. Ang KH, Chong G, Li Y, IEEE Trans. Control Syst. Technol., 13, 4, 2005
  39. Visioli A, Practical PID Control, Springer (2006).
  40. Lundstrom P, Lee JH, Morari M, Skogestad S, Comput. Chem. Eng., 19, 4, 1995
  41. Morshedi AM, Cutler CR, Skrovanek TA, Optimal solution of dynamic matrix control with linear programming techniques (LDMC), American Control Conferences (IEEE) (1985).