Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 275-286, 2017
Fault detection based on polygon area statistics of transformation matrix identified from combined moving window data
Principal component analysis (PCA) has been widely used in monitoring industrial processes, but it is still necessary to make improvements in having a timely and effective access to variation information. It is known that the transformation matrix generated from real-time PCA model indicates inner relations between original variables and new produced components, so this matrix would be different when modeling data deviate due to the change of the operating condition. Based on this theory, this paper proposes a novel real-time monitoring approach which utilizes polygon area method to measure the variation degree of the transformation matrices and then constructs a statistic for monitoring purpose. The on-line data are collected through a combined moving window (CMW), containing both normal and monitored data. To evaluate the performance of the proposed method, a simple numerical simulation, the CSTR process and the classic Tennessee Eastman process are employed for illustration, with some PCA-based methods used for comparison.
[References]
  1. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467, 2004
  2. Nowicki A, Grochowski M, Duzinkiewicz K, Int. J. Appl. Mathematics Computer Sci., 22, 939, 2012
  3. Jiang Q, Yan X, Lv Z, Guo M, Korean J. Chem. Eng., 30(6), 1181, 2013
  4. Kolluri SS, Esfahani IJ, Garikiparthy PSN, Yoo CK, Korean J. Chem. Eng., 32(8), 1486, 2015
  5. Lu C, Xiao S, Gu X, Korean J. Chem. Eng., 31(11), 1943, 2014
  6. Jolliffe I, Principal component analysis, Wiley Online Library (2005).
  7. Wehrens R, in Principal component analysis, pp. 43-66, Springer, (2011).
  8. Chiang LH, Braatz RD, Russell EL, Fault detection and diagnosis in industrial systems, Springer Science & Business Media (2001).
  9. Scholkopf B, Smola A, Muller KR, Neural Computation, 10, 1299, 1998
  10. Shao JD, Rong G, Lee JM, Chem. Eng. Res. Des., 87(11A), 1471, 2009
  11. Cheng CY, Hsu CC, Chen MC, Ind. Eng. Chem. Res., 49(5), 2254, 2010
  12. Jiang Q, Yan X, Korean J. Chem. Eng., 31(11), 1935, 2014
  13. Hyvarinen A, Oja E, Neural Networks, 13, 411, 2000
  14. Hyvarinen A, Karhunen J, Oja E, Independent component analysis, Wiley (2004).
  15. Ge Z, Song Z, Korean J. Chem. Eng., 26(6), 1467, 2009
  16. Ge ZQ, Song ZH, Ind. Eng. Chem. Res., 46(7), 2054, 2007
  17. Tong CD, Song Y, Yan XF, Ind. Eng. Chem. Res., 52(29), 9897, 2013
  18. Ge ZQ, Zhang MG, Song ZH, J. Process Control, 20(5), 676, 2010
  19. Wang B, Yan X, Jiang Q, Lv Z, J. Chemometrics, 29(3), 165, 2014
  20. Nomikos P, Macgregor JF, AIChE J., 40(8), 1361, 1994
  21. Majid NAA, Taylor MP, Chen JJ, Stam MA, Mulder A, Young BR, Control Eng. Practice, 19, 367, 2011
  22. Li WH, Yue HH, Valle-Cervantes S, Qin SJ, J. Process Control, 10(5), 471, 2000
  23. Cheng C, Chiu MS, Chemometrics Intell. Lab. Syst., 76, 1, 2005
  24. Korenius T, Laurikkala J, Juhola M, Information Sciences, 177, 4893, 2007
  25. Lau C, Ghosh K, Hussain M, Che Hassan C, Chemometrics Intell. Lab. Syst., 120, 1, 2013
  26. Alwan LC, Roberts HV, J. Business Economic Statistics, 6, 87, 1988
  27. Montgomery D, Mastrangelo C, Faltin FW, Woodall WH, MacGregor JF, Ryan TP, J. Quality Technol., 23, 179, 1991
  28. Wiel SV, Technometrics, 38, 139, 1996
  29. Negiz A, Cinar A, AIChE J., 43(8), 2002, 1997
  30. Simoglou A, Martin EB, Morris AJ, Comput. Chem. Eng., 26(6), 909, 2002
  31. Ku W, Storer RH, Georgakis C, Chemometrics Intell. Lab. Syst., 30, 179, 1995
  32. Jingyuan W, Zhijiang S, Peng J, Ketian Y, Zhiqiang C, Comput. Appl. Chem., 1, 2, 2010
  33. Ryu SR, Noda I, Jung YM, Bull. Korean Chem. Soc., 32, 2232, 2011
  34. Wang X, Kruger U, Irwin GW, Ind. Eng. Chem. Res., 44(15), 5691, 2005
  35. Malinowski ER, Factor analysis in chemistry, Wiley (2002).
  36. Camacho J, Ferrer A, J. Chemometrics, 26, 361, 2012
  37. Valle S, Li W, Qin SJ, Ind. Eng. Chem. Res., 38, 4389, 1999
  38. Jiang QC, Yan XF, Zhao WX, Ind. Eng. Chem. Res., 52(4), 1635, 2013
  39. Jiang QC, Yan XF, AIChE J., 60(3), 949, 2014
  40. Bishop CM, Nasrabadi NM, Pattern recognition and machine learning, Springer New York (2006).
  41. Kano M, Hasebe S, Hashimoto L, Ohno H, AIChE J., 48(6), 1231, 2002
  42. Robbins DP, Discrete Computational Geometry, 12, 223, 1994
  43. Pak I, Adv. Appl. Mathematics, 34, 690, 2005
  44. Yoon SY, MacGregor JF, J. Process Control, 11(4), 387, 2001
  45. Cho JH, Lee JM, Choi SW, Lee D, Lee IB, Chem. Eng. Sci., 60(1), 279, 2005
  46. Mansouri M, Nounou M, Nounou H, Karim N, J. Loss Prev. Process Ind., 40, 334, 2016
  47. Alcala CF, Qin SJ, Ind. Eng. Chem. Res., 49(17), 7849, 2010
  48. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245, 1993
  49. Jiang Q, Yan X, Huang B, IEEE Trans. Ind. Electron., 63, 377, 2015
  50. Du KL, Swamy M, Neural Networks and Statistical Learning, 355, Springer (2014).
  51. Wang B, Jiang Q, Yan X, Korean J. Chem. Eng., 31(6), 930, 2014