Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3251-3257, 2016
Optimization of operating conditions in the purification of graphite oxide dispersions
In the graphite oxide (GO) suspension purification process, some metallic impurities in GO cannot be separated. The residual metallic impurities dominate graphite oxide properties and have a negative influence on applications. Therefore, the removal of metallic impurities from graphite oxide has been brought into focus now. Single factor experiments and orthogonal experiments are used to get the optimal purification condition. The results show that purification agent, temperature, stirring intensity and contact time affect the purification degree, and the purification agent is the most important element for the purification efficiency. The optimal purification condition is 10% hydrochloric acid (H10), 20 ℃, 0 rpm and 60 min. Besides, the theoretical stage is calculated by the mass conservation equation and distribution balance equation and the minimum stage is 3 under the optimal purification condition.
[References]
  1. Brodie BC, J. Franklin. I., 59, 420, 1855
  2. Mar IT, Valer GJ, Carbon, 24, 163, 1986
  3. Hummers WS, Hoffman RE, J. Am. Chem. Soc., 80, 1339, 1958
  4. Hudson MJ, Hunter FR, Peckett JW, J. Mater. Chem., 7, 301, 1997
  5. Adriano A, Sze YC, Bahareh K, Richard DW, Zdene S, Martin P, Angew. Chem.-Int. Edit., 51, 500, 2012
  6. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132, 2010
  7. Kim SW, Choi HM, Korean J. Chem. Eng., 33(1), 330, 2016
  8. Rogers JA, Nat. Nanotechnol., 3(5), 254, 2008
  9. Pumera M, Chem. Soc. Rev., 39, 4146, 2010
  10. Ambrosi A, Pumera M, Chem.-Eur. J., 16, 1786, 2010
  11. Guo L, Morris DG, Liu XY, Vaslet C, Hurt RH, Kane AB, Chem. Mater., 19, 3472, 2007
  12. Tian XL, Zhou S, Zhang ZY, He X, Yu MJ, Lin DH, Environ. Sci. Technol., 44, 8144, 2010
  13. Koyama S, Kim YA, Hayashi T, Takeuchi K, Fujii C, Kuroiwa N, Koyama H, Tsukahara T, Endo M, Carbon, 47, 1365, 2009
  14. Buchwald SL, Bolm C, Angew. Chem.-Int. Edit., 121, 5694, 2009
  15. Pumera M, Miyahara Y, Nanoscale, 1, 260, 2009
  16. Zhao G, Li J, Ren X, Chen C, Wang X, Environ. Sci. Technol., 45, 10454, 2011
  17. Jia W, Lu S, Korean J. Chem. Eng., 31(7), 1265, 2014
  18. Atieh MA, Bakather OY, Tawabini BS, Bukhari AA, Khaled M, Alharthi M, Fettouhi M, Abuilaiwi FA, J. Nanomater, 210, 9, 2010
  19. Machida M, Mochimaru T, Tatsumoto H, Carbon, 44, 2681, 2006
  20. Liao JH, Zhang Y, Yu W, Xu LN, Ge CW, Liu JH, Gu N, Colloids Surf. A: Physicochem. Eng. Asp., 223, 177, 2003
  21. Galletto P, Brevet PF, Girault HH, Antoine R, Broyer M, J. Phys. Chem. B, 103(41), 8706, 1999
  22. Bian Y, Bian ZY, Zhang JX, Ding AZ, Liu SL, Wang H, Appl. Surf. Sci., 329, 269, 2015
  23. Li Y, Wang CL, Guo ZJ, Liu CL, Wu WS, J. Radioanal. Nucl. Chem., 299, 1683, 2014
  24. Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, Wang MZ, Cheng HM, Adv. Mater., 21(29), 3007, 2009
  25. Ryu KH, Lee C, Lee GG, Jo S, Sung SW, Korean J. Chem. Eng., 30(10), 1946, 2013