Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3231-3244, 2016
Volumetric properties of supercritical carbon dioxide from volume-translated and modified Peng-Robinson equations of state
Following three well-established approaches, different modifications have been proposed that significantly improve the Peng-Robinson EOS’s predictions of the volumetric properties of carbon dioxide in the supercritical region. By making use of 5301 experimental PVT data points of supercritical carbon dioxide (SC-CO2), three models have been developed based on the volume-translation concept, modification of the alpha function of the attractive term of the Peng-Robinson EOS and the addition of a third translation parameter to the EOS. The experimental data considered encompass a wide temperature and pressure range of 304.35-1,273.15 K and 7.38-800.00MPa, respectively. According to the results from several graphical and statistical analyses, the proposed models can reliably be employed for prediction and representation of the volumetric properties of SC-CO2 with AARDs below 1.3%. Comparisons have also been made with the modified Redlich-Kwong EOS as well as the standard reference multiparameter EOS developed by Span and Wagner, demonstrating the comparable accuracy of the proposed models, while offering notably simpler mathematical formulation.
[References]
  1. Schneider GM, Kautz CB, Tuma D, in Supercritical Fluids, Springer Netherlands, Dordrecht, 31 (2000), DOI:10.1007/978-94-011-3929-8_2.
  2. Brunner G, Annu. Rev. Chem. Biomol. Eng., DOI:10.1146/annurev-chembioeng-073009-101311., 1, 321, 2010
  3. de Melo MMR, Silvestre AJD, Silva CM, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2014.04.007., 92, 115, 2014
  4. Fornari T, Vicente G, Vazquez E, Garcia-Risco MR, Reglero G, J. Chromatogr. A, DOI:10.1016/j.chroma.2012.04.051., 1250, 34, 2012
  5. Taylor LT, Anal. Chem., DOI:10.1021/ac101194x., 82, 4925, 2010
  6. Brunner G, J. Supercrit. Fluids, DOI:10.1016/j.sup-flu.2008.09.002., 47(3), 373, 2009
  7. Brunner G, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.09.001., 47(3), 382, 2009
  8. Debenedetti PG, Tom JW, Kwauk X, Yeo SD, Fluid Phase Equilib., DOI:10.1016/0378-3812(93)87155-T., 82, 311, 1993
  9. Turk M, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.09.008., 47(3), 537, 2009
  10. Rozzi NL, Singh RK, Compr. Rev. Food Sci. Food Saf., DOI:10.1111/j.1541-4337.2002.tb00005.x., 1, 33, 2002
  11. Sekhon B, Int. J. PharmTech Res., 2, 810, 2010
  12. Lang Q, Wai CM, Talanta, DOI:10.1016/S0039-9140(00)00557-9., 53, 771, 2001
  13. Rios A, Zougagh M, de Andres F, Bioanalysis, DOI:10.4155/bio.09.167., 2, 9, 2010
  14. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2007.05.013., 43(1), 150, 2007
  15. Reverchon E, De Marco I, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2006.03.020., 38(2), 146, 2006
  16. Tucker SC, Goodyear G, in Supercritical Fluids, Springer Netherlands, Dordrecht, 395 (2000), DOI:10.1007/978-94-011-3929-8_16.
  17. Antal MJ, Brittain A, DeAlmeida C, Ramayya S, Roy JC, ACS Symposium Series, DOI:10.1021/bk-1987-0329.ch007., 329, 77, 1987
  18. Klein MT, Mentha YG, Torry LA, Ind. Eng. Chem. Res., DOI:10.1021/ie00001a026., 31, 182, 1992
  19. Reverchon E, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(97)00014-4., 10(1), 1, 1997
  20. Smith RM, J. Chromatogr. A, DOI:10.1016/S0021-9673(99)00617-2., 856, 83, 1999
  21. Heidaryan E, Jarrahian A, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2013.05.009., 81, 92, 2013
  22. Sandler SI, An Introduction to Applied Statistical Thermodynamics, Wiley, 1st Ed. (2010).
  23. Wilczek-Vera G, Vera JH, AIChE J., DOI:10.1002/aic.14741., 61(9), 2824, 2015
  24. Deiters UK, Macias-Salinas R, Ind. Eng. Chem. Res., DOI:10.1021/ie4038664., 53(6), 2529, 2014
  25. Smith R, Inomata H, Peters C, in Supercritical Fluid Science and Technology, 333 (2013), DOI:10.1016/B978-0-444-52215-3.00006-4.
  26. Nazarzadeh M, Moshfeghian M, Fluid Phase Equilib., DOI:10.1016/j.fluid.2012.10.003., 337, 214, 2013
  27. Abudour AM, Mohammad SA, Robinson RL, Gasem KAM, Fluid Phase Equilib., DOI:10.1016/j.fluid.2013.04.002., 349, 37, 2013
  28. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., DOI:10.1021/i160057a011., 15, 59, 1976
  29. Robinson DB, Peng DY, The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs (Research Report RR-28), Gas Processors Association (1978).
  30. van der Waals JD, Leiden University, The Netherlands (1873).
  31. Google Scholar, (2016). https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0,5&cites=4508945351855465254.
  32. Valderrama JO, Ind. Eng. Chem. Res., DOI:10.1021/ie020447b., 42(8), 1603, 2003
  33. Martin JJ, Ind. Eng. Chem. Fundam., DOI:10.1021/i160070a001., 18, 81, 1979
  34. Peneloux A, Rauzy E, Freze R, Fluid Phase Equilib., DOI:10.1016/0378-3812(82)80002-2., 8, 7, 1982
  35. de Sant'Ana HB, Ungerer P, de Hemptinne JC, Fluid Phase Equilib., DOI:10.1016/S0378-3812(98)00441-5., 154(2), 193, 1999
  36. Baled H, Enick RM, Wu Y, McHugh MA, Burgess W, Tapriyal D, Morreale BD, Fluid Phase Equilib., DOI:10.1016/j.fluid.2011.12.027., 317, 65, 2012
  37. Abudour AM, Mohammad SA, Robinson RL, Gasem KAM, Fluid Phase Equilib., DOI:10.1016/j.fluid.2012.08.013., 335, 74, 2012
  38. Haghtalab A, Mahmoodi P, Mazloumi SH, Can. J. Chem. Eng., DOI:10.1002/cjce.20519., 89(6), 1376, 2011
  39. Privat R, Visconte M, Zazoua-Khames A, Jaubert JN, Gani R, Chem. Eng. Sci., DOI:10.1016/j.ces.2014.12.040., 126, 584, 2015
  40. Cramer NL, in Proceedings of the 1st International Conference on Genetic Algorithms, Ed. Grefenstette JJ, L. Erlbaum Associates Inc., Carnegie-Mellon University, Pittsburgh, PA, USA, 183 (1985).
  41. Koza JR, Genetic programming: on the programming of computers by means of natural selection, MIT Press, Cambridge, MA, USA (1992).
  42. Schmidt M, Lipson H, Science, DOI:10.1126/science.1165893., 324, 81, 2009
  43. Gandomi AH, Alavi AH, Ryan C, Handbook of Genetic Programming Applications, Springer International Publishing, Cham (2015), DOI:10.1007/978-3-319-20883-1.
  44. Langdon WB, Gustafson SM, Genet. Program. Evolvable Mach., DOI:10.1007/s10710-010-9111-4., 11, 321, 2010
  45. Schmidt M, Lipson H, Eureqa, Nutonian Inc., http://www.nutonian.com (2016).
  46. Span R, Multiparameter Equations of State, Springer Berlin Heidelberg, Berlin, Heidelberg (2000), DOI:10.1007/978-3-662-04092-8.
  47. Jacobsen RT, Penoncello SG, Lemmon EW, Span R, in Equations of State for Fluids and Fluid Mixtures, Eds. Sengers JV, Kayser RF, Peters CJ, White HJ, Elsevier, Amsterdam, 849 (2000), DOI:10.1016/S1874-5644(00)80008-9.
  48. Span R, Wagner W, Lemmon EW, Jacobsen RT, Fluid Phase Equilib., DOI:10.1016/S0378-3812(01)00416-2., 183-184, 1, 2001
  49. Span R, Wagner W, J. Phys. Chem. Ref Data, DOI:10.1063/1.555991., 25, 1509, 1996
  50. Zolghadr A, Escrochi M, Ayatollahi S, J. Chem. Eng. Data, DOI:10.1021/je301283e., 58(5), 1168, 2013
  51. Kodama D, Kato M, Kaneko T, Fluid Phase Equilib., DOI:10.1016/j.fluid.2013.02.003., 357, 57, 2013
  52. Kato M, Kodama D, Kokubo M, Ohashi K, Hashimoto S, J. Chem. Eng. Data, DOI:10.1021/je100788g., 56(3), 421, 2011
  53. Gil L, Martinez-Lopez JF, Artal M, Blanco ST, Embid JM, Fernandez J, Otin S, Velasco I, J. Phys. Chem. B, DOI:10.1021/jp100184r., 114(16), 5447, 2010
  54. Kodama D, Kato M, Hashimoto S, Kaneko T, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2010.09.019., 55(2), 696, 2010
  55. Mantilla ID, Cristancho DE, Ejaz S, Hall KR, Atilhan M, Iglesias-Silva GA, J. Chem. Eng. Data, DOI:10.1021/je1001158., 55(11), 4611, 2010
  56. Kodama D, Sugiyama K, Ono T, Kato M, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2008.07.021., 47(2), 128, 2008
  57. Pensado AS, Padua AAH, Comunas MJP, Fernandez J, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2007.10.004., 44(2), 172, 2008
  58. Suarez-Iglesias O, Medina I, Pizarro C, Bueno JL, Ind. Eng. Chem. Res., DOI:10.1021/ie061591q., 46(11), 3810, 2007
  59. Liu K, Kiran E, Ind. Eng. Chem. Res., DOI:10.1021/ie070274w., 46(16), 5453, 2007
  60. Kato M, Sugiyama K, Sato M, Kodama D, Fluid Phase Equilib., DOI:10.1016/j.fluid.2007.01.033., 257(2), 207, 2007
  61. Pecar D, Dolecek V, J. Chem. Eng. Data, DOI:10.1021/je700373r., 52(6), 2442, 2007
  62. Pecar D, Dolecek V, J. Supercrit. Fluids, DOI:10.1016/j.supflu.2006.07.007., 40(2), 200, 2007
  63. Kato M, Kodama D, Sato M, Sugiyama K, J. Chem. Eng. Data, DOI:10.1021/je050514j., 51(3), 1031, 2006
  64. Skerget M, Cretnik L, Knez Z, Skrinjar M, Fluid Phase Equilib., DOI:10.1016/j.fluid.2004.12.012., 231(1), 11, 2005
  65. Ferri A, Banchero M, Manna L, Sicardi S, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(03)00114-1., 30(1), 41, 2004
  66. Eggers R, Jaeger P, in Supercritical Fluids as Solvents and Reaction Media, Elsevier, 363 (2004), DOI:10.1016/B978-044451574-2/50015-8.
  67. Garmroodi A, Hassan J, Yamini Y, J. Chem. Eng. Data, DOI:10.1021/je020218w., 49(3), 709, 2004
  68. Zhang XF, Zhang XG, Han BX, Shi L, Li HP, Yang GY, J. Supercrit. Fluids, DOI:10.1016/S0896-8446(02)00038-4., 24(3), 193, 2002
  69. Klimeck J, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1006/jcht.2000.0711., 33(3), 251, 2001
  70. Ihmels EC, Gmehling J, Ind. Eng. Chem. Res., DOI:10.1021/ie001135g., 40(20), 4470, 2001
  71. Shi L, Zhang X, Zhang X, Yang G, Han B, Yan H, Acta Physico-Chimica Sin., DOI:10.3866/PKU.WHXB20000107, 16, 31, 2000
  72. Kodama D, Nakajima T, Tanaka H, Kato M, Netsu Bussei, DOI:10.2963/jjtp.12.186., 12, 186, 1998
  73. van der Gulik PS, Phys. A Stat. Mech. its Appl., DOI:10.1016/S0378-4371(96)00466-9., 238, 81, 1997
  74. Lau WW, Hwang CA, Holste JC, Hall KR, Gammon BE, Marsh KN, J. Chem. Eng. Data, DOI:10.1021/je9700434., 42(5), 900, 1997
  75. Zhang Z, King JW, J. Chromatogr. Sci., DOI:10.1093/chromsci/35.10.483., 35, 483, 1997
  76. Yaginuma R, Nakajima T, Tanaka H, Kato M, J. Chem. Eng. Data, DOI:10.1021/je9700028., 42(4), 814, 1997
  77. Nowak P, Tielkes T, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1006/jcht.1997.0208., 29(8), 885, 1997
  78. Docter A, Ruhr-Universitat Bochum (1997).
  79. Seitz JC, Blencoe JG, J. Chem. Thermodyn., DOI:10.1006/jcht.1996.0107., 28(11), 1207, 1996
  80. Ozer EO, Platin S, Akman U, Hortacsu O, Can. J. Chem. Eng., DOI:10.1002/cjce.5450740615., 74(6), 920, 1996
  81. Akgerman A, Erkey C, Orejuela M, Ind. Eng. Chem. Res., DOI:10.1021/ie950422v, 35(3), 911, 1996
  82. Kiran E, Pohler H, Xiong Y, J. Chem. Eng. Data, DOI:10.1021/je9501503., 41(2), 158, 1996
  83. Liu DJ, Kwauk M, Li HZ, Chem. Eng. Sci., DOI:10.1016/0009-2509(96)00247-3., 51(17), 4045, 1996
  84. Roy BC, Goto M, Hirose T, Ind. Eng. Chem. Res., DOI:10.1021/ie950357p., 35(2), 607, 1996
  85. Kodama D, Kubota N, Yamaki Y, Tanaka H, Kato M, Netsu Bussei, DOI:10.2963/jjtp.10.16., 10, 16, 1996
  86. Pohler H, Kiran E, J. Chem. Eng. Data, DOI:10.1021/je950273n., 41(3), 482, 1996
  87. Gokmenoglu Z, Xiong Y, Kiran E, J. Chem. Eng. Data, DOI:10.1021/je950260+., 41(2), 354, 1996
  88. Seitz JC, Blencoe JG, Bodnar RJ, J. Chem. Thermodyn., DOI:10.1006/jcht.1996.0049., 28(5), 521, 1996
  89. Knez Z, Skerget M, Sencarbozic P, Rizner A, J. Chem. Eng. Data, DOI:10.1021/je00017a045., 40(1), 216, 1995
  90. Gonenc ZS, Akman U, Sunol AK, J. Chem. Eng. Data, DOI:10.1021/je00020a013., 40(4), 799, 1995
  91. Duarte-Garza H, Hwang CA, Kidd MW, Lau WWR, Moeller D, Eubank PT, Holste JC, Hall KR, Gammon BE, Marsh KN, GPA Res. Rep., 1, 1995
  92. Fenghour A, Wakeham WA, Watson JT, J. Chem. Thermodyn., DOI:10.1006/jcht.1995.0019., 27(2), 219, 1995
  93. Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., DOI:10.1002/aic.690390113., 39, 127, 1993
  94. Sengers JMHL, Deiters UK, Klask U, Swidersky P, Schneider GM, Int. J. Thermophys., DOI:10.1007/BF00502114., 14, 893, 1993
  95. Brachthauser K, Kleinrahm R, Losch HW, Wagner W, Fortschr.-Berichte VDI, R. 8, 371, 1 (1993).
  96. Wells T, Foster NR, Chaplin RP, Ind. Eng. Chem. Res., DOI:10.1021/ie00003a039., 31, 927, 1992
  97. Langenfeld JJ, Hawthorne SB, Miller DJ, Tehrani J, Anal. Chem., DOI:10.1021/ac00043a014., 64, 2263, 1992
  98. Gilgen R, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1016/S0021-9614(05)80264-2., 24, 1243, 1992
  99. Giles NF, Oscarson JL, Rowley RL, Tolley WK, Izatt RM, Fluid Phase Equilib., DOI:10.1016/0378-3812(92)80014-Z., 73, 267, 1992
  100. Tolley WK, Izatt RM, Oscarson JL, Thermochim. Acta, DOI:10.1016/0040-6031(91)80418-I., 181, 127, 1991
  101. Duschek W, Kleinrahm R, Wagner W, J. Chem. Thermodyn., DOI:10.1016/0021-9614(90)90172-M., 22, 827, 1990
  102. Ely J, Haynes W, Bain B, J. Chem. Thermodyn., DOI:10.1016/0021-9614(89)90036-0., 21, 879, 1989
  103. Tan CS, Liou DC, Ind. Eng. Chem. Res., DOI:10.1021/ie00078a017., 27, 988, 1988
  104. Magee JW, Ely JF, Int. J. Thermophys., DOI:10.1007/BF00503153., 9, 547, 1988
  105. Johns AI, Rashid S, Watson JTR, Clifford AA, J. Chem. Soc.-Perkin Trans. 1, DOI:10.1039/f19868202235., 82, 2235, 1986
  106. Holste JC, Hall KR, Eubank PT, Esper G, Watson MQ, Warowny W, Bailey DM, Young JG, Bellomy MT, J. Chem. Thermodyn., DOI:10.1016/0021-9614(87)90001-2., 19, 1233, 1987
  107. Scott AC, Johns AI, Watson JTR, Clifford AA, J. Chem. Soc.-Perkin Trans. 1, DOI:10.1039/f19837900733., 79, 733, 1983
  108. Kuskova NV, Martynets VG, Matizen EV, Sartakov AG, Zhurnal Fiz. Khimii, 57, 2971, 1983
  109. Iwasaki H, J. Chem. Phys., DOI:10.1063/1.441286., 74, 1930, 1981
  110. Haepp HI, Warme-und Stoffubertragung, 9, 281, 1976
  111. Shmonov VM, Shmulovich KI, Dokl. Akad. Nauk SSSR, 217, 935, 1974
  112. Tsiklis DS, Linshits LR, Rodkina IB, Zhurnal Fiz. Khimii, 48, 1544, 1974
  113. Tsiklis DS, Linshits LR, Rodkina IB, Zhurnal Fiz. Khimii, 48, 1541, 1974
  114. le Neindre B, Tufeu R, Bury P, Sengers JV, Berichte der Bunsengesellschaft fur Phys. Chemie, DOI:10.1002/bbpc.19730770410., 77, 262, 1973
  115. Besserer GJ, Robinson DB, J. Chem. Eng. Data, DOI:10.1021/je60057a033., 18, 137, 1973
  116. Tsiklis DS, Linshits LR, Tsimmerman SS, Teplofiz. Svoistva Veshchestv Mater., 130, 1971
  117. Vasserman AA, Golovskii EA, Tsymarnyi VA, Depos. Doc. VINITI, 1, 1970
  118. Kirillin VA, Ulybin SA, Zherdev EP, Teplofiz. Svoistva Zhidk. Mater. Vses. Teplofiz. Konf., 136, 1970
  119. Kirillin VA, Ulybin SA, Zherdev EP, Teplofiz. Svoistva Veshchestv Mater., 206, 1970
  120. Kirillin VA, Ulybin SA, Yherdev EP, Teploenergetika, 16, 94, 1969
  121. Golovskii EA, Tsymarnyi VA, Teploenergetika, 67, 1969
  122. Kirillin VA, Ulybin SA, Zherdev EP, Teploenergetika, 16, 92, 1969
  123. Vukalovich MP, Kobelev VP, Timoshenko NI, Teploenergetika, 81, 1968
  124. Ku PS, Dodge BF, J. Chem. Eng. Data, DOI:10.1021/je60033a001., 12, 158, 1967
  125. Sass A, Dodge BF, Bretton RH, J. Chem. Eng. Data, DOI:10.1021/je60033a003., 12, 168, 1967
  126. Juza J, Kmonicek V, Sifner O, Physica, DOI:10.1016/0031-8914(65)90093-5., 31, 1735, 1965
  127. Kestin J, Whitelaw JH, Zien TF, Physica, DOI:10.1016/0031-8914(64)90211-3., 30, 161, 1964
  128. Vukalovich MP, Altunin VV, Timoshenko NI, Teploenergetika, 85, 1963
  129. Guildner LA, J. Res. Natl. Bur. Stand. Sect. A, 63, 333, 1962
  130. Vukalovich MP, Altunin VV, Timoshenko NI, Teploenergetika, 56, 1962
  131. Vukalovich MP, Altunin VV, Teploenergetika, 6, 58, 1959
  132. Kennedy GC, Am. J. Sci., DOI:10.2475/ajs.252.4.225., 252, 225, 1954
  133. Reamer HH, Olds RH, Sage BH, Lacey WN, Ind. Eng. Chem., DOI:10.1021/ie50409a019., 36, 88, 1944
  134. Michels A, Michels C, Wouters H, Proc. R. Soc. London. Ser. A, 153, 214, 1935
  135. NIST Standard Reference Database 103b (NIST TDE), http://trc.nist.gov/tde.html (2015).
  136. Redlich O, Kwong JNS, Chem. Rev., DOI:10.1021/cr60137a013., 44, 233, 1949
  137. Soave G, Chem. Eng. Sci., DOI:10.1016/0009-2509(72)80096-4., 27, 1197, 1972
  138. Zendehboudi S, Rajabzadeh AR, Bahadori A, Chatzis I, Dusseault MB, Elkamel A, Lohi A, Fowler M, Ind. Eng. Chem. Res., DOI:10.1021/ie303106z., 53(4), 1645, 2014
  139. Zendehboudi S, Shafiei A, Bahadori A, James LA, Elkamel A, Lohi A, Chem. Eng. Res. Des., DOI:10.1016/j.cherd.2013.08.001., 92(5), 857, 2014