Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3222-3230, 2016
CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups
Thermodynamic and kinetic data are important for designing a CO2 absorption process using aqueous amine solutions. A piperazine derivative, 1-(2-aminoethyl)piperazine (AEP), was blended with aqueous amine solutions due to its thermal degradation stability, high CO2 loading (mole of CO2-absorbed per mole of amine) and high solubility in water. In this study, the vapor liquid equilibrium (VLE), absorption rate, and species distribution of aqueous AEP solutions were studied to develop an optimum amine solution in a post-combustion capture process. The VLE and apparent absorption rate of the aqueous 30wt% AEP solution were measured using a batch-type reactor at 313.15, 333.15, and 353.15 K. The AEP exhibited approximately twice higher CO2 loading compared with monoethanolamine (MEA) at all temperatures. The apparent AEP absorption rate (kapp=0.1min-1) was similar to that of diethanolamine (DEA) at 333.15 K. Speciation of the CO2-absorbed AEP was analyzed using 13C NMR. Although AEP featured a primary amino group and secondary amino group, it did not form bicarbamate upon reaction with CO2 based on analysis results. AEP-1-carbamate was primarily formed by reactions between AEP and CO2 during the initial reaction. Bicarbonate species formed as the quantity of absorbed CO2 increased.
[References]
  1. Albo J, Luis P, Irabien A, Ind. Eng. Chem. Res., 49(21), 11045, 2010
  2. Marland G, Bozden TA, Andres RJ, Global, regional, and national CO2 emissions, Trends: A compendium of data on global change, Statistical Review of World Energy (2010).
  3. Allam R, Bolland O, IPCC special report: Carbon dioxide capture and storage, IPCC Working Group III (2005).
  4. Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35(5), 438, 2009
  5. Applehy AJ, Foulkes FR, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).
  6. Han C, Graves K, Neathery J, Liu K, Energy Environ. Res., 1, 67, 2011
  7. Kim YE, Choi JH, Nam SC, Yoon YI, Ind. Eng. Chem. Res., 50(15), 9306, 2011
  8. Davison J, Energy, 32(7), 1163, 2007
  9. Closmann F, Nguyen T, Rochelle GT, Energy Procedia, 1, 1351, 2009
  10. Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073, 2003
  11. Davy R, Energy Procedia, 1, 885, 2009
  12. Li MH, Shen KP, Fluid Phase Equilib., 85, 129, 1993
  13. Cheng MD, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 742, 342, 2010
  14. Jou FY, Mather AE, Otto FD, Can. J. Chem. Eng., 73(1), 140, 1995
  15. Veawab A, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 38(10), 3917, 1999
  16. Veawab A, Toniwachwuthikul P, Bhole SD, Ind. Eng. Chem. Res., 1, 36, 1997
  17. Singh P, Brilman DWF, Groeneveld MJ, Energy Procedia, 1, 1257, 2009
  18. Du Y, Li L, Namjoshi O, Voice AK, Fine NA, Rochelle GT, Energy Procedia, 37, 1621, 2013
  19. Du Y, Rochelle GT, Energy Procedia, 63, 997, 2014
  20. Zhang R, Bonnin-Nartker EP, Farthing GA, Ji L, Klidas MG, Nelson ME, Rimpf LM, Energy Procedia, 4, 1660, 2011
  21. Zhang Y, Chen CC, Ind. Eng. Chem. Res., 50(1), 163, 2011
  22. Jackson P, Fisher KJ, Attalla MI, Am. Soc. Mass. Spectrom., 22, 1420, 2011
  23. Islam MS, Yusoff R, Ali BS, Engineering e-Transaction., 2, 97, 2010
  24. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  25. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  26. Xie HB, Zhou YZ, Zhang YK, Johnson JK, J. Phys. Chem. A, 114(43), 11844, 2010
  27. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 2, 322, 2009
  28. Chakraborty AK, Bischoff KB, Astarita G, Damewood JR, J. Am. Chem. Soc., 110, 6947, 1988
  29. Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467, 2007
  30. Barzagli F, Mani F, Peruzzini M, Int. J. Greenhouse Gas Control, 5, 448, 2011
  31. Perinu C, Arstad B, Jens KJ, Int. J. Greenhouse Gas Control, 20, 230, 2014
  32. Choi JH, Oh SG, Kim YE, Yoon YI, Nam SC, Environ. Eng. Sci., 29, 328, 2012
  33. Um IH, Kim MJ, Min JS, Kwon DS, Bull. Korean Chem. Soc., 15, 523, 1997
  34. Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC, J. Ind. Eng. Chem., 18(1), 568, 2012
  35. Ciftja AF, Hartono AH, Svendsen HF, Int. J. Greenhouse Gas Control, 16, 224, 2013