Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3194-3202, 2016
Modeling of gas permeation through mixed matrix membranes using a comprehensive computational method
Three different morphologies can occur at the interface of inorganic and polymeric phases in mixed matrix membranes (MMMs). These morphologies are characterized by their different parameters such as partial pore blockage factor (α), polymer chain rigidification factor (β), and thickness of rigidified layer or void region. In this study, the morphology of three MMMs has been evaluated using a comprehensive computational method. The average absolute relative error (%AARE) is used as a criterion for optimizing three various MMM morphological parameters. According to the obtained optimum parameters, it was confirmed that two MMMs of C60/Matrimid and PVAc-Zeolite 4A have pore blockage and polymer chain rigidified defects. The results show that the morphology of ZIF-8/6FDA-DAM can be considered as an ideal morphology. After obtaining the morphological parameters, the permeability of the studied MMMs was predicted based on the modified Maxwell model and good agreement was observed between the calculated value and the experimental data.
[References]
  1. Baker RW, Membrane Technology and Applications, 2nd Ed., 1, Wiley (2004).
  2. Lin H, Freeman BD, J. Mol. Struct., 739, 57, 2005
  3. McLeary E, Jansen J, Kapteijn F, Microporous Mesoporous Mater., 90, 198, 2006
  4. Pandey P, Chauhan R, Prog. Polym. Sci, 26, 853, 2001
  5. Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym. Sci, 32, 483, 2007
  6. Li Y, Krantz WB, Chung TS, AIChE J., 53(9), 2470, 2007
  7. Mahajan R, Koros WJ, Polym. Eng. Sci., 42(7), 1420, 2002
  8. Mahajan R, Koros WJ, Thundyil M, Membr. Technol., 1999, 6, 1999
  9. Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 335, 2003
  10. Semsarzadeh MA, Ghalei B, Fardi M, Esmaeeli M, Vakili E, Korean J. Chem. Eng., 31(5), 841, 2014
  11. Arjmandi M, Pakizeh M, Pirouzram O, Korean J. Chem. Eng., 32(6), 1178, 2015
  12. Bouma RH, Checchetti A, Chidichimo G, Drioli E, J. Membr. Sci., 128(2), 141, 1997
  13. Pal R, J. Colloid Interface Sci., 317(1), 191, 2008
  14. Moore TT, Mahajan R, Vu DQ, Koros WJ, AIChE J., 50(2), 311, 2004
  15. Maxwell JC, Clarendon Press, Oxford (1881).
  16. Gonzo EE, Parentis ML, Gottifredi JC, J. Membr. Sci., 277(1-2), 46, 2006
  17. Banhegyi G, Colloid Polym. Sci., 264, 1030, 1986
  18. Lewis T, Nielsen L, J. Appl. Polym. Sci., 14, 1449, 1970
  19. Nielsen LE, J. Appl. Polym. Sci., 17, 3819, 1973
  20. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM, Sep. Purif. Technol., 75(3), 229, 2010
  21. Vinh-Thang H, Kaliaguine S, J. Membr. Sci., 452, 271, 2014
  22. Hoang VT, Kaliaguine S, Chem. Rev., 113(7), 4980, 2013
  23. Hashemifard SA, Ismail AF, Matsuura T, J. Membr. Sci., 347(1-2), 53, 2010
  24. Gheimasi KM, Mohammadi T, Bakhtiari O, J. Membr. Sci., 427, 399, 2013
  25. Sheffel JA, Tsapatsis M, J. Membr. Sci., 295(1-2), 50, 2007
  26. Sheffel JA, Tsapatsis M, J. Membr. Sci., 326(2), 595, 2009
  27. Singh T, Kang DY, Nair S, J. Membr. Sci., 448, 160, 2013
  28. Yang AC, Liu CH, Kang DY, J. Membr. Sci., 495, 269, 2015
  29. Chung TS, Chan SS, Wang R, Lu ZH, He CB, J. Membr. Sci., 211(1), 91, 2003
  30. Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ, J. Membr. Sci., 389, 34, 2012
  31. Mahajan R, Koros WJ, Ind. Eng. Chem. Res., 39(8), 2692, 2000
  32. Varanasi S, Guskova O, John A, Sommer JU, J. Chem. Phys., 142, 224308, 2015
  33. Adams RT, Lee SS, Bae TH, Ward JK, Johnson JR, Jones CW, Nair S, Koros WJ, J. Membr. Sci., 367(1-2), 197, 2011