Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3162-3168, 2016
CO2 decomposition using metal ferrites prepared by co-precipitation method
To catalytically decompose the greenhouse gas, CO2, spinel structure M-ferrites (M=Co, Ni, Cu, Zn) were synthesized by chemical co-precipitation using metal salts and sodium hydroxide as starting materials. The crystallite size of the newly-prepared M-ferrites increased and the BET surface area decreased with increasing calcination temperature. A thermal analysis of the reduction and reoxidation of M-ferrites indicated that substitution of divalent transition metals (i.e., Cu, Ni and Co) into Fe3O4 improved the reduction kinetics in the order of Cu>Ni>Co. ZnFe2O4 was the most difficult compound to completely reduce due to its stable structure. Commercial samples of the reduced Fe3O4, CoFe2O4 and ZnFe2O4 showed an increase in mass through the reoxidation process, but it was much more difficult for oxygen atoms to enter the structure of the reduced samples of NiFe2O4 and CuFe2O4. The M-ferrites in a batch type reactor showed better efficiency than the commercial Fe3O4. Also found was that CoFe2O4 showed a high regeneration potential, although it required a higher critical reaction temperature. NiFe2O4 and CuFe2O4 were excellent candidate materials for CO2 decomposition at lower temperatures.
[References]
  1. Sacco A, Reid RC, Carbon, 17, 459, 1979
  2. Tamaura Y, Tahata M, Nature, 346, 255, 1990
  3. Kodama T, Tabata M, Tominaga K, Yoshida T, Tamaura Y, J. Mater. Sci., 28, 547, 1993
  4. Tabata M, Nishida Y, Kodama T, Mimori K, Yoshida T, Tamaura Y, J. Mater. Sci., 28, 971, 1993
  5. Kato H, Kodama T, Tsuji M, Tamaura Y, Chang SG, J. Mater. Sci., 28, 5689, 1994
  6. Chen LS, Chen SY, Lu GL, J. Mater. Sci., 41(19), 6465, 2006
  7. Ma LJ, Chen LS, Chen SY, J. Phys. Chem. Solids, 68, 6459, 2007
  8. Shen JW, Lim YH, Jo YM, Appl. Chem. Eng., 22(2), 185, 2011
  9. Khedr MH, Omar AA, Abdel-Moaty SA, Colloids Surf. A: Physicochem. Eng. Asp., 281, 8, 2006
  10. Lv WZ, Liu B, Luo ZK, Ren XZ, Zhang PX, J. Alloy. Compd., 465, 261, 2008
  11. Ko JH, Park RS, Jeon JK, Kim DH, Jung SC, Kim SC, Park YK, J. Ind. Eng. Chem., 32, 109, 2015
  12. Lee EH, Park RS, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., 37, 18, 2016
  13. Hwang CS, Wang NC, Mater. Chem. Phys., 88(2-3), 258, 2004
  14. Kobayashi M, Shirai H, Nunokawa M, Ind. Eng. Chem. Res., 39(6), 1934, 2000
  15. Khedr MH, Omar AA, Abdel-Moaty SA, Colloids Surf. A: Physicochem. Eng. Asp., 281, 8, 2006
  16. Ma LJ, Chen LS, Chen SY, Sol. State Sci, 11, 176, 2009
  17. Sacco A, Reid RC, Carbon, 17, 459, 1979
  18. Tamaura T, Tahata M, Nature, 346, 255, 1990
  19. Kodama T, Tabata M, Tominaga K, Yoshida T, Tamaura Y, J. Mater. Sci., 28, 547, 1993
  20. Tabata M, Nishida Y, Kodama T, Mimori K, Yoshida T, Tamaura Y, J. Mater. Sci., 28, 971, 1993
  21. Kato H, Kodama T, Tsuji M, Tamaura Y, Chang SG, J. Mater. Sci., 29(21), 5689, 1994
  22. Chen LS, Chen SY, Lu GL, J. Mater. Sci., 41(19), 6465, 2006
  23. Ma LJ, Chen LS, Chen SY, J. Phys. Chem. Solids, 68, 6459, 2007
  24. Shen JW, Lim YH, Jo YM, Appl. Chem. Eng., 22(2), 185, 2011
  25. Khedr MH, Omar AA, Abdel-Moaty SA, Colloids Surf. A: Physicochem. Eng. Asp., 281, 8, 2006
  26. Lv WZ, Liu B, Luo ZK, Ren XZ, Zhang PX, J. Alloy. Compd., 465, 261, 2008
  27. Ko JH, Park RS, Jeon JK, Kim DH, Jung SC, Kim SC, Park YK, J. Ind. Eng. Chem., 32, 109, 2015
  28. Lee EH, Park RS, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., 37, 18, 2016
  29. Hwang CS, Wang NC, Mater. Chem. Phys., 88(2-3), 258, 2004
  30. Kobayashi M, Shirai H, Nunokawa M, Ind. Eng. Chem. Res., 39(6), 1934, 2000
  31. Khedr MH, Omar AA, Abdel-Moaty SA, Colloids Surf. A: Physicochem. Eng. Asp., 281, 8, 2006
  32. Ma LJ, Chen LS, Chen SY, Solid State Sci., 11, 176, 2009