Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3141-3148, 2016
Efficient removal of methylene blue in aqueous solution by freeze-dried calcium alginate beads
Novel porous calcium alginate beads were prepared via crosslinking of calcium followed by freeze drying for investigating the adsorption performance for methylene blue. These beads possessed reduced shrinkage, highly porous lamellar structure and high specific surface area, and exhibited enhanced adsorption capacity and much faster adsorption rate compared to the non-porous beads obtained with conventional oven drying method. Methylene blue adsorption capacity increased with increasing of initial concentration and pH, while decreased with increasing of temperature. The adsorption process fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The maximum adsorption capacity was 961.5mg g-1 at 298.15 K. After eight successive adsorption-desorption cycles, the adsorption capacity had negligible decrease. Owing to the high adsorption capability, rapid adsorption rate, easy recovery and reusability, the freeze-dried beads imply a prospective, biodegradable and attractive adsorbent for removing contaminants from wastewater.
[References]
  1. El Qada EN, Allen SJ, Walker GM, J. Chem. Eng., 124, 103, 2006
  2. Alkaim AF, Sadik Z, Mahdi DK, Alshrefi SM, Al-Sammarraie AM, Alamgir FM, Singh PM, Aljeboree AM, Korean J. Chem. Eng., 32(12), 2456, 2015
  3. Shirmardi M, Mahvi AH, Hashemzadeh B, Naeimabadi A, Hassani G, Niri MV, Korean J. Chem. Eng., 30(8), 1603, 2013
  4. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH, ACS Appl. Mater. Interfaces, 5, 8796, 2013
  5. Hameed BH, Ahmad AA, J. Hazard. Mater., 164(2-3), 870, 2009
  6. Arabi S, Sohrabi MR, Water Sci. Technol., 70, 24, 2014
  7. Zhai R, Zhang B, Wan YZ, Li CC, Wang JT, Liu JD, Chem. Eng. J., 214, 304, 2013
  8. Liu L, Wan YZ, Xie YD, Zhai R, Zhang B, Liu JD, Chem. Eng. J., 187, 210, 2012
  9. Karadag D, Akgul E, Tok S, Erturk F, Kaya MA, Turan M, J. Chem. Eng. Data, 52(6), 2436, 2007
  10. Blackburn RS, Environ. Sci. Technol., 38, 4905, 2004
  11. Serpa AL, Schneider IAH, Rubio J, Environ. Sci. Technol., 39, 885, 2005
  12. Fu F, Gao ZW, Gao LX, Li DS, Ind. Eng. Chem. Res., 50(16), 9712, 2011
  13. Ahmaruzzaman M, Energy Fuels, 23, 1494, 2009
  14. Ho YS, Chiu WT, Wang CC, Bioresour. Technol., 96, 1285, 2005
  15. Deze EG, Papageorgiou SK, Favvas EP, Katsaros FK, Chem. Eng. J., 209, 537, 2012
  16. Lagoa R, Rodrigues JF, Biochem. Eng. J., 46, 320, 2009
  17. Eddleston MD, Patel B, Day GM, Jones W, Cryst. Growth Des., 13, 4599, 2013
  18. Mukai SR, Nishihara H, Shichi S, Tamon H, Chem. Mater., 16, 4987, 2004
  19. Okada T, Kato T, Yamaguchi T, Sakai T, Mishima S, Ind. Eng. Chem. Res., 52(34), 12018, 2013
  20. Kosuge K, Kubo S, Kikukawa N, Takemori M, Langmuir, 23(6), 3095, 2007
  21. Kruk M, Jaroniec M, Sayari A, J. Phys. Chem. B, 101(4), 583, 1997
  22. Hameed BH, El-Khaiary MI, J. Hazard. Mater., 155(3), 601, 2008
  23. Ho YS, McKay G, Chem. Eng. J., 70(2), 115, 1998
  24. Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD, J. Colloid Interface Sci., 332(1), 46, 2009
  25. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89, 2006
  26. Gupta VK, Nayak A, Agarwal S, Environ. Eng. Res., 20, 1, 2015
  27. Santos DCd, Adebayo MA, Pereira SdFP, Prola LDT, Cataluna R, Lima EC, Saucier C, Gally CR, Machado FM, Korean J. Chem. Eng., 31(8), 1470, 2014
  28. Shi HC, Li WS, Zhong L, Xu CJ, Ind. Eng. Chem. Res., 53(3), 1108, 2014
  29. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  30. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212, 1966
  31. Liu RC, Zhang B, Mei DD, Zhang HQ, Liu JD, Desalination, 268(1-3), 111, 2011
  32. Ozcan AS, Erdem B, Ozcan A, J. Colloid Interface Sci., 280(1), 44, 2004