Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3128-3133, 2016
Thermogravimetric characteristics of α-cellulose and decomposition kinetics in a micro-tubing reactor
The pyrolysis characteristics and kinetics of α-cellulose were investigated using thermogravimetric analyzer (TGA) and micro tubing reactor, respectively. Most of the α-cellulose decomposed between 250 and 400 ℃ at heating rate of 5-20 ℃/min. The apparent activation energy was observed in the range of 263.02 kJ mol-1 to 306.21 kJ mol-1 at the conversion of 10-80%. The kinetic parameters were determined by nonlinear least-squares regression of the experimental data, assuming first-order kinetics. It was found from the kinetic rate constants that the predominant reaction pathway was A(α-cellulose) to B(bio-oil) rather than A(α-cellulose) to C(gas; C1-C4) and/or to B(bio-oil) to C(gas; C1-C4) at temperatures of 340-360 ℃.
[References]
  1. Jefferson M, Renew. Energy, 31(5), 571, 2006
  2. Nigam PS, Singh A, Prog. Energy Combust. Sci., 37(1), 52, 2011
  3. Park SH, Cho HJ, Ryu C, Park YK, J. Ind. Eng. Chem., 36, 314, 2016
  4. Demirba A, Fuel, 80, 1885, 2001
  5. Manya JJ, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 42(3), 434, 2003
  6. Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236, 2015
  7. Rao TR, Sharma A, Energy, 23(11), 973, 1998
  8. Raveendran K, Ganesh A, Khilar KC, Fuel, 75, 987, 1996
  9. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781, 2007
  10. Zhu G, Zhu X, Xiao Z, Yi F, J. Anal. Appl. Pyrolysis, 94, 126, 2012
  11. Deguchi S, Tsujii K, Horikoshi K, Chem. Commun., 31, 3293, 2006
  12. Kim SH, Lee CM, Kafle K, Korean J. Chem. Eng., 30(12), 2127, 2013
  13. Wang S, Du Y, Zhang W, Cheng X, Wang J, Korean J. Chem. Eng., 31(10), 1786, 2014
  14. Patwardhan PR, Satrio JA, Brown RC, Shanks BH, J. Anal. Appl. Pyrolysis, 86, 323, 2009
  15. Antal MJ, Varhegyi G, Jakab E, Ind. Eng. Chem. Res., 37(4), 1267, 1998
  16. Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 34(3), 703, 1995
  17. Varhegyi G, Jakab E, Antal MJ, Energy Fuels, 8(6), 1345, 1994
  18. Bradbury AG, Sakai Y, Shafizadeh F, J. Anal. Appl. Pyrolysis, 23, 3271, 1979
  19. Agrawal RK, Can. J. Chem. Eng., 66, 413, 1988
  20. Di Blasi C, Prog. Energy Combust. Sci., 34(1), 47, 2008
  21. Chayaporn S, Sungsuk P, Sunphorka S, Kuchonthara P, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 32(6), 1081, 2015
  22. Kim SS, Kim J, Park YH, Park YK, Bioresour. Technol., 101(24), 9797, 2010
  23. Kim SS, Kim SH, Fuel, 79, 1943, 2000
  24. Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100(1), 400, 2009
  25. Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163, 2010
  26. Choi GH, Kim SS, Kim J, Joo DS, Lee J, Appl. Chem. Eng., 22(5), 508, 2011
  27. Ouajai S, Shanks R, Polym. Degrad. Stabil., 89, 327, 2005
  28. Caballero J, Conesa J, Font R, Marcilla A, J. Anal. Appl. Pyrolysis, 42, 159, 1997
  29. Kim SS, Agblevor FA, Waste Manage., 27, 135, 2007
  30. Maiti S, Purakayastha S, Ghosh B, Fuel, 86(10-11), 1513, 2007
  31. Soysa R, Choi YS, Choi SK, Kim SJ, Han SY, Korean J. Chem. Eng., 33(2), 603, 2016
  32. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82(15-17), 1949, 2003
  33. Wang G, Li W, Li BQ, Chen HK, Fuel, 87(4-5), 552, 2008
  34. Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186, 2009
  35. Lee EH, Park R, Kim H, Park SH, Jung SC, Jeon JK, Kim SC, Park YK, J. Ind. Eng. Chem., In Press, 2016
  36. Le TA, Ly HV, Kim J, Kim SS, Choi JH, Woo HC, Othman MR, Chem. Eng. J., 250, 157, 2014
  37. Ko JH, Park RS, Jeon JK, Kim DH, Jung SC, Kim SC, Park YK, J. Ind. Eng. Chem., 32, 109, 2015
  38. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494, 2008