Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3102-3108, 2016
NOx removal by non-thermal plasma at low temperatures with amino groups additives
NOx removal from flue gas using direct current (DC) narrow pulsed discharge-induced non-thermal plasma (NTP) was experimentally investigated. Factors such as additives, NOx initial concentrations, residence time, reaction temperatures inside the NTP reactor, and so on were investigated to evaluate their effects on NOx removal efficiencies. The focus was on the effects of additives containing amino groups. The results showed that H2O addition enhanced NOx removal, NH3 could further increase the NOx removal efficiencies under the same conditions without an obvious NH3 slip, and N2H4 was the most effective additive by reducing NOx to N2. X-Ray diffraction (XRD) analysis of the products collected from the NTP reactor demonstrated that NOx removal inside the NTP reactor was mainly based on NOx oxidation when ammonia or H2O was used as an additive, while NOx removal was mainly based on NOx reduction with the N2H4 additive.
[References]
  1. GB 13223-2011, Emission standard of air pollutants for thermal power plants (2011).
  2. Kamuk B, Proceedings of The 17th Annual North American Waste-to-Energy Conference (NAWTEC17), Chantilly, Virginia, USA: American Society of Mechanical Engineers (2009).
  3. Fujii T, Rea M, Vacuum, 59, 228, 2000
  4. Brutscher J, Gunzel R, Moller W, Surf. Coat. Technol., 93, 197, 1997
  5. Rajanikanth BS, Das S, Srinivasan AD, Plasma Sci. Technol., 6, 2475, 2004
  6. Niu J, Yang X, Zhu A, Shi L, Sun Q, Xu Y, Shi C, Catal. Commun., 7, 297, 2006
  7. Oda T, Kato T, Takahashi T, Shimizu K, J. Electrost., 34, 268, 1998
  8. Krawczyk K, Mlotek M, Appl. Catal. B: Environ., 30(3-4), 233, 2001
  9. Miessner H, Francke KP, Rudolph R, Hammer T, Catal. Today, 75(1-4), 325, 2002
  10. Wallis AE, Whitehead JC, Zhang K, Appl. Catal. B: Environ., 74(1-2), 111, 2007
  11. Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S, IEEE T. Ind. Appl., 31, 957, 1995
  12. Lin W, Zhang B, Hou W, Li D, Yang H, J. Environ. Sci., 21, 790, 2009
  13. Li J, Ke R, Li W, Hao J, Catal. Today, 139, 49, 2008
  14. Ighigeanu D, Martin D, Zissulescu E, Macarie R, Oproiu C, Cirstea E, Iovu H, Calinescu I, Iacob N, Vacuum, 77, 493, 2005
  15. Onda K, Kusunoki H, Ito K, Ibaraki H, J. Appl. Phycol., 95, 3928, 2004
  16. Finke B, Schroder K, Ohl A, Plasmas Process Polym., 5, 386, 2008
  17. Hong L, Chen D, Proceedings of 2011 IEEE Power Engineering and Automation Conference, Wuhan, China (2011).
  18. Lee JB, Kim SD, Chem. Eng. J., 69(2), 99, 1998
  19. Obradovic BM, Sretenovic GB, Kuraica MM, J. Hazard. Mater., 185(2-3), 1280, 2011
  20. Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817, 2007
  21. Takaki K, Sato T, Mukaigawa S, Fujiwara T, Proceedings of 2007 IEEE Pulsed Power Plasma Science Conference, Albuquerque, USA (2007).
  22. Zhao GB, Garikipati SBJ, Hu XD, Argyle MD, Radosz M, Chem. Eng. Sci., 60(7), 1927, 2005
  23. Mchale ET, Knox BE, Palmer HB, Proceedings of The Tenth Symposium (International) on Combustion, Cambridge, England:Combustion Institute (1965).
  24. Cho Y, Chang HA, KSME Int. J., 11, 428, 1997
  25. Mok YS, Koh DJ, Shin DN, Kim KT, AAPG Bull., 86(3), 303, 2004
  26. Broer S, Hammer T, Appl. Catal. B: Environ., 28(2), 101, 2000
  27. Price TW, Evans DD, JPL Technical Report 32-1227 (1968).
  28. Leray A, Khacef A, Makarov M, Cormier JM, Proceedings of 20th Internatinal Symposium on Plasma Chemistry, Philadelphia:USA (2011).
  29. Tang X, Ye Z, Yi H, Li H, Yu Q, Proceedings of 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu: IEEE Computer Society (2010).
  30. Yumoto H, Matsudo S, Akashi K, Vacuum, 65, 509, 2002
  31. Stevenson SA, Vartuli JC, J. Catal., 208(1), 100, 2002
  32. Kaneko K, Imai J, Carbon, 27, 954, 1989
  33. Guo RT, Pan WG, Ren JX, Zhang XB, Jin Q, Korean J. Chem. Eng., 30(1), 101, 2013