Issue
Korean Journal of Chemical Engineering,
Vol.33, No.11, 3085-3101, 2016
Gas permeation and separation in asymmetric hollow fiber membrane permeators:Mathematical modeling, sensitivity analysis and optimization
Mathematical modeling is useful for analysis of process design and performance and is widely used for membrane separation and other important technologies in the energy sector. This study presents the results of our investigations on the mathematical modeling and optimization of hollow fiber membrane permeators specifically used for air separation as well as natural gas purification. The governing equations and mathematical models are developed based on the consideration of ideal and non-ideal conditions often involved in the separation of gas mixtures using membrane permeators. The influence and consequences of adoption of two distinct numerical methods for solving governing equations are investigated in details. The results obtained by using the models as well as the effect of numerical method type are examined and compared to the experimental data. The findings highlight the important role of the solution method on the validity and accuracy of the models. Moreover, the effect of variations in the operating conditions and physical geometries of the membrane are investigated through comprehensive sensitivity analysis. Accordingly, a set of optimal input parameters is determined using an appropriate statistical method. The findings provide useful information for the design and development of high performance membrane permeators and processes particularly in the case of binary gas mixtures for energy applications.
[References]
  1. Hosseini SS, Chung TS, J. Membr. Sci., 328(1-2), 174, 2009
  2. Shahmirzadi MAA, Hosseini SS, Ruan G, Tan NR, RSC Adv., 5, 49080, 2015
  3. Hosseini SS, Li Y, Chung TS, Liu Y, J. Membr. Sci., 302(1-2), 207, 2007
  4. Kwon H, Lu M, Lee J, Korean J. Chem. Eng., 31(6), 949, 2014
  5. Hosseini SS, Omidkhah MR, Moghaddam AZ, Pirouzfar V, Krantz WB, Tan NR, Sep. Purif. Technol., 122, 278, 2014
  6. Najari S, Hosseini SS, Omidkhah M, Tan NR, RSC Adv., 5, 47199, 2015
  7. Hosseini SS, Chung TS, Polymer blends and carbonized polymer blends, in, Google Patents (2014).
  8. Park JK, Seo JI, Korean J. Chem. Eng., 19(6), 940, 2002
  9. Hosseini SS, Teoh MM, Chung TS, Polymer, 49(6), 1594, 2008
  10. Teerachaiyapat T, Ramakul P, Korean J. Chem. Eng., 33(1), 8, 2016
  11. Weller S, Steiner WA, J. Appl. Phys., 21, 279, 1950
  12. Hosseini SS, Peng N, Chung TS, J. Membr. Sci., 349(1-2), 156, 2010
  13. Nguyen QT, Gref R, Clement R, Lenda H, Colloid Polym. Sci., 271, 1134, 1993
  14. Fattah KA, Hamam SM, Al-Enezi G, Ettoueny HM, Hughes R, J. Membr. Sci., 65, 247, 1992
  15. Kundu PK, Chakma A, Feng XS, Can. J. Chem. Eng., 90(5), 1253, 2012
  16. Wang R, Liu SL, Lin TT, Chung TS, Chem. Eng. Sci., 57(6), 967, 2002
  17. Giglia S, Bikson B, Perrin JE, Donatelli AA, Ind. Eng. Chem. Res., 30, 1239, 1991
  18. Gornshteyn BJ, Can. J. Chem. Eng., 81(1), 139, 2003
  19. Ismail AF, Haron S, Development of a simulation model for a hollow fiber membrane N2-H2 separation system, Jurnal Teknologi, 45 (2000).
  20. Katoh T, Tokumura M, Yoshikawa H, Kawase Y, Sep. Purif. Technol., 76(3), 362, 2011
  21. Kovvali AS, Vemury S, Admassu W, Ind. Eng. Chem. Res., 33(4), 896, 1994
  22. Lim SP, Tan XY, Li K, Chem. Eng. Sci., 55(14), 2641, 2000
  23. Marriott J, Sorensen E, Chem. Eng. Sci., 58(22), 4975, 2003
  24. Marriott JI, Sorensen E, Bogle IDL, Comput. Chem. Eng., 25(4-6), 693, 2001
  25. Zhao SY, Li ZQ, Liu Y, Wang LE, Desalination, 233(1-3), 310, 2008
  26. Kaldis SP, Kapantaidakis GC, Papadopoulos TI, Sakellaropoulos GP, J. Membr. Sci., 142(1), 43, 1998
  27. Coker DT, Allen T, Freeman BD, Fleming GK, AIChE J., 45(7), 1451, 1999
  28. Khalilpour R, Abbas A, Lai ZP, Pinnau I, Chem. Eng. Res. Des., 91(2), 332, 2013
  29. Kundu PK, Chakma A, Feng X, Can. J. Chem. Eng., 91, 1092, 2012
  30. Makaruk A, Harasek M, J. Membr. Sci., 344(1-2), 258, 2009
  31. Shamsabadi AA, Kargari A, Farshadpour F, Laki S, J. Membr. Sep. Technol., 1, 19, 2012
  32. Pan CY, AIChE J., 32, 2020, 1986
  33. Hosseini SS, Roodashti SM, Kundu PK, Tan NR, Can. J. Chem. Eng., 93(7), 1275, 2015
  34. Hosseini SS, Najari S, Kundu PK, Tan NR, Roodashti SM, RSC Adv., 5, 86359, 2015
  35. Ismail AF, Saidi H, Rahman AA, Numerical solution of a mathematical model for hollow-fiber membrane gas separation system, in: Seminar Penyelidikan Fakulti Kej. Kimia & Kej. Sumber Asli, Jawatankuasa PenyelIdikan & Perundingan, Fakulti Kej. Kimia & Kej. Sumber Asli, UTM, 1 (1993).
  36. Pan CY, AIChE J., 29, 545, 1983
  37. Singh V, Rhinehart RR, Narayan RS, Tock RW, Ind. Eng. Chem. Res., 34(12), 4472, 1995
  38. Scholz M, Harlacher T, Melin T, Wessling M, Ind. Eng. Chem. Res., 52, 1079, 2012
  39. Dehkordi JA, Hosseini SS, Kundu PK, Tan NR, Chem. Prod. Process. Model., 11, 11, 2016
  40. Hosseini SS, Dehkordi JA, Kundu PK, Chem. Prod. Process. Model., 11, 7, 2016
  41. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).
  42. Gorissen H, Chem. Eng. Process., 22, 63, 1987
  43. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill Professional (2001).
  44. Cockburn B, Karniadakis GE, Shu CW, The development of discontinuous Galerkin methods, Springer (2000).
  45. Al-Omari A, Schuttler HB, Arnold J, Taha T, Solving Nonlinear Systems of First Order Ordinary Differential Equations Using a Galerkin Finite Element Method, Access, IEEE, 1, 408 (2013).
  46. Rastegar SO, Mousavi SM, Rezaei M, Shojaosadati SA, J. Ind. Eng. Chem., 20(5), 3096, 2014
  47. Hassani A, Soltani RDC, Kiransan M, Karaca S, Karaca C, Khataee A, Korean J. Chem. Eng., 33(1), 178, 2016
  48. Myers RH, Montgomery DC, Anderson-Cook CM, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2009).
  49. Tranchino L, Santarossa R, Carta F, Fabiani C, Bimbi L, Sep. Sci. Technol., 24, 1207, 1989
  50. Feng XS, Ivory J, Rajan VSV, AIChE J., 45(10), 2142, 1999
  51. Sanders E, Koros WJ, Hopfenberg H, Stannett V, J. Membr. Sci., 18, 52, 1984
  52. Chern R, Koros W, Yui B, Hopfenberg H, Stannett V, J. Polym. Sci. B: Polym. Phys., 22, 1061, 1984
  53. Donohue M, Minhas B, Lee S, J. Membr. Sci., 42, 197, 1989
  54. Pirouzfar V, Hosseini SS, Omidkhah MR, Moghaddam AZ, Polym. Eng. Sci., 54(1), 147, 2014
  55. Dantzig G, The nature of mathematical programming, Mathematical Programming Glossary (2010).