Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 3016-3020, 2016
Combustion of boron particles coated with an energetic polymer material
Elemental boron has attracted considerable attention as a potential high energetic material for explosives and propellants. However, its use has been hindered by its high vaporization temperature and surface oxide layer. In this study, boron particles were coated with glycidyl azide polymer (GAP) to improve their combustion characteristics. The coated particles were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy. XPS performed before and after Ar+ ion sputtering confirmed that the azide (-N3) group of GAP was positioned at the proximity of the boron surface. In addition, B@GAP particles could be decorated with metallic Ag (~10 nm) nanoparticles. The combustion characteristics were examined using a newly designed pre-heated (1,800 K) drop tube furnace and a high speed camera. Two stages of combustion were observed for a dust cloud of GAP-coated boron particles. The burning time was estimated to be approximately 37.5msec.
[References]
  1. Hu JX, Xia ZX, Zhang WH, Fang ZB, Wang DQ, Huang LY, Int. J. Aerospace Eng., 2012, 160620, 2012
  2. Trunov M, Hoffmann V, Schoenitz M, Dreizin EL, J. Propul Power, 24, 184, 2008
  3. Lima RJP, Dubois C, Mader O, Stowe RR, Ringuette S, Int. J. Energetic Mater. Chem. Prop., 9, 437, 2010
  4. Foelsche RO, Burton RL, Krier H, Combust. Flame, 117(1-2), 32, 1999
  5. Xi JF, Liu JZ, Wang Y, Liang DL, Li HP, Zhou JH, PROPELLANT-EXPLOS-PYROTECH, 39(6), 844, 2014
  6. Tang CJ, Lee YJ, Litzinger TA, Combust. Flame, 117(1-2), 244, 1999
  7. Mohan S, Trunov MA, Dreizin EL, J. Propul. Power, 24, 199, 2008
  8. Van Devener B, Perez JPL, Jankovich J, Anderson SL, Energy Fuels, 23, 6111, 2009
  9. Meinkohn D, Combust. Sci. Technol., 176(9), 1493, 2004
  10. Hussmann B, Pfitzner M, Combust. Flame, 157(4), 803, 2010
  11. Xi JF, Liu JZ, Wang Y, J. Solid Rocket Technol., 36, 654, 2013
  12. Liu JZ, Xi JF, Yang WJ, Acta Astronaut., 96, 89, 2014
  13. Clemenson MD, Johnson S, Krier H, Glumac N, PROPELLANT-EXPLOS-PYROTECH, 39(3), 454, 2014
  14. Jiang X, Trunov M, Schoenitz M, Dave R, Dreizin EL, J. Alloy. Compd., 478, 246, 2009
  15. Yeh CL, Kuo KK, Prog. Energy Combust. Sci., 22(6), 511, 1996
  16. Shyu IM, Liu TK, Combust. Flame, 100, 634, 1995
  17. Devener BV, Perez JPL, Anderson SL, J. Mater. Res., 24, 3462, 2009
  18. Hu C, Guo X, Jing Y, Chen J, Zhang C, Huang J, J. Appl. Polym. Sci., 131, 40636, 2014
  19. Min BS, Park YC, Yoo JC, PROPELLANT-EXPLOS-PYROTECH, 37(1), 59, 2012
  20. Min BS, Ko SW, Macromol. Res., 15(3), 225, 2007
  21. Brochu S, Ampleman G, Macromolecules, 29(17), 5539, 1996
  22. You JS, Kweon JO, Kang SC, Noh ST, Macromol. Res., 18, 1226, 2000
  23. Wang TF, Li SF, Yang B, Huang CQ, Li YY, J. Phys. Chem. B, 111(10), 2449, 2007
  24. Selim K, Ozkar S, Yilmaz L, J. Appl. Polym. Sci., 77(3), 538, 2000
  25. Xanthopoulou G, Marinou A, Vekinis G, Lekatou A, Vardavoulias M, Coatings, 4, 231, 2014
  26. Iskandar F, Adv. Powder Technol., 20(4), 283, 2009
  27. Sakamoto M, Fujistuka M, Majima T, J. Photochem. Photobiol. A-Chem., 10, 33, 2009
  28. Radhakrishnan C, Lo MKF, Warrier MV, Garcia-Garibay MA, Monbouquette HG, Langmuir, 22(11), 5018, 2006
  29. Sun YL, Li SF, J. Hazard. Mater., 154(1-3), 112, 2008
  30. Shin WG, Jung HJ, Sung HG, Hyun HS, Sohn Y, Ceram. Int., 40, 11511, 2014
  31. Wan S, Yu Y, Pu J, Lu Z, RSC Adv., 5, 19236, 2015
  32. Sohn Y, J. Mol. Catal. A-Chem., 379, 59, 2013
  33. Kang JG, Sohn Y, J. Mater. Sci., 47(2), 824, 2012