Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 3011-3015, 2016
Laccase-catalyzed polymerization of m-phenylenediamine in aqueous buffers
In the laccase-catalyzed polymerization of m-phenylendiamine in 100% aqueous buffers, the yield of the polymer was strongly influenced by various reaction conditions such as the solution pH and the concentrations of laccase and m-phenylendiamine. When the reaction was performed at pH 3, the 100% synthetic yield of the polymer was achieved. As pH increased, the yield of the polymer decreased significantly to only 4.4% at pH 9. Effects of solution pH on the morphology and the thermal stability of the polymer were investigated in detail. The polymer synthesized at pH 3 has the typical aggregated morphology of globular particles, but being synthesized at pH 7, it has non-aggregated morphology. The thermal stability of the polymer deteriorated as reaction pH increased.
[References]
  1. Li XG, Huang MR, Duan W, Yang YL, Chem. Rev., 102(9), 2925, 2002
  2. Li XG, Ma XL, Sun J, Huang MR, Langmuir, 25(3), 1675, 2009
  3. Park H, Kwon O, Ryu K, Korean J. Chem. Eng., 32(9), 1847, 2015
  4. Wang J, Yin X, Tang W, Ma H, Korean J. Chem. Eng., 32(9), 1889, 2015
  5. Zhang YW, Wang L, Tian JQ, Li HL, Luo YL, Sun XP, Langmuir, 27(6), 2170, 2011
  6. Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, Shi Y, J. Mater. Chem., 22, 18244, 2012
  7. Yu WT, Zhang LY, Wang HY, Chai LY, J. Hazard. Mater., 260, 789, 2013
  8. Wang JJ, Jiang J, Hit B, Yu SH, Adv. Funct. Mater., 18(7), 1105, 2008
  9. Gross RA, Kumar A, Kalra B, Chem. Rev., 101(7), 2097, 2001
  10. Alvarez S, Manolache S, Danes FJ, AAPG Bull., 88, 369, 2003
  11. Nabid MR, Entezami AA, J. Appl. Polym. Sci., 94(1), 254, 2004
  12. Ochoteco E, Mecerreyes D, Adv. Polym. Sci., 237, 1, 2010
  13. Ichinohe D, Muranaka T, Sasaki T, Kobayashi M, Kise H, J. Polym. Sci. A: Polym. Chem., 36(14), 2593, 1998
  14. Ichinohe D, Muranaka T, Kise H, J. Appl. Polym. Sci., 70(4), 717, 1998
  15. Shan J, Cao S, Polym. Adv. Technol., 11, 288, 2000
  16. Ichinohe D, Saitoh N, Kise H, Macromol. Chem. Phys., 199, 1241, 1998
  17. Piontek K, Antorini M, Choinowski TJ, Biol. Chem., 277, 37663, 2002
  18. Madhavi V, Lele SS, BioResour., 4, 1694, 2009
  19. Karamyshev AV, Shleev SV, Koroleva OV, Yaropolov AI, Sakharov IY, Enzyme Microb. Technol., 33(5), 556, 2003
  20. Song HK, Palmore GTR, J. Phys. Chem. B, 109(41), 19278, 2005
  21. Birhanli E, Yesilada O, Biochem. Eng. J., 52, 33, 2010
  22. Raseda N, Hong S, Kwon OY, Ryu K, J. Microbiol. Biotechnol., 24, 1673, 2014
  23. Dordick JS, Enzyme Microb. Technol., 11, 194, 1989
  24. Klibanov AM, Nature, 409, 241, 2001
  25. Carrea G, Riva S, Angew. Chem.-Int. Edit., 39, 2226, 2000
  26. Yan XB, Han ZJ, Yang Y, Tay BK, J. Phys. Chem. C, 111, 4125, 2007
  27. Tran HD, Wang Y, D’Arcy JM, Kaner RB, ACS Nano, 2, 1841, 2008
  28. Huang JX, Kaner RB, J. Am. Chem. Soc., 126(3), 851, 2004
  29. Sahoo NG, Jung YC, So HH, Cho JW, Synth. Met., 157, 374, 2007