Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 2953-2960, 2016
Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process
A comparative study was conducted to evaluate the performance of two membrane types of electrospun poly(vinylidene fluoride) (PVDF) and commercial ploytetrafluoroethylene (PTFE). The optimized needleless electrospinning technique was used to prepare PVDF membranes. Scanning electron microscopy (SEM), wettability tests, water flux, mechanical strength and liquid entry pressure (LEP) measurements were performed to evaluate the prepared membrane. Air gap membrane distillation (AGMD) experiments were carried out to investigate the salt rejection performance and the durability of membranes. The results show that our nanofibrous PVDF membrane presents higher water permeation flux (>20 kg/m2 h) compared to commonly used PTFE. In addition, the experimental data confirms that competitive salt rejection efficiency (>99.8%) was obtained in this new membrane.
[References]
  1. El-Zanati E, El-Khatib KM, Desalination, 205(1-3), 15, 2007
  2. Xu Y, Zhu BK, Xu YY, Desalination, 189(1-3), 165, 2006
  3. Gryta M, Tomaszewska M, Grzechulska J, Morawski AW, J. Membr. Sci., 181(2), 279, 2001
  4. Hofman-Bieniek M, Jasiewicz K, Pietrzak R, Korean J. Chem. Eng., 31(2), 304, 2014
  5. Lawson KW, Lloyd DR, J. Membr. Sci., 124(1), 1, 1997
  6. El-Bourawi MS, Ding Z, Ma R, Khayet M, J. Membr. Sci., 285(1-2), 4, 2006
  7. Cath TY, Adams VD, Childress AE, J. Membr. Sci., 228(1), 5, 2004
  8. Izquierdo-Gil MA, Garcia-Payo MC, Fernandez-Pineda C, J. Membr. Sci., 155(2), 291, 1999
  9. Koros WJ, Ma YH, Shimidzu T, J. Membr. Sci., 120(2), 149, 1996
  10. Guijt CM, Meindersma GW, Reith T, de Haan AB, Sep. Purif. Technol., 43(3), 233, 2005
  11. Schofield RW, Fane AG, Fell CJD, Macoun R, Desalination, 77, 279, 1990
  12. Schofield RW, Fane AG, Fell CJD, J. Membr. Sci., 53, 159, 1990
  13. Uragami T, Fujimoto M, Sugihara M, Desalination, 34, 311, 1980
  14. Khayet M, Feng CY, Khulbe KC, Matsuura T, Polymer, 43, 2879, 2002
  15. Mulder M, Basic principles of membrane technology, First Ed., Kluwer Academic Publishers, Dordrecht (1996).
  16. Moradi R, Karimi-Sabet J, Shariaty-Niassara M, Amini Y, Chem. Eng. Process., 100, 26, 2016
  17. Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki MA, Polymers, 7, 1444, 2015
  18. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223, 2003
  19. Feng C, Khulbe KC, Matsuura I, Gopal R, Kaur S, Rarnakrishna S, Khayet A, J. Membr. Sci., 311(1-2), 1, 2008
  20. Wu D, Huang X, Lai X, Sun D, Lin L, J. Nanosci. Nanotechnol., 10, 4221, 2010
  21. Niu HT, Lin T, Wang XG, J. Appl. Polym. Sci., 114(6), 3524, 2009
  22. Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1, 2011
  23. Ma Y, Su Y, Li Y, Jiang Z, Korean J. Chem. Eng., 32(9), 1902, 2015
  24. Hendren ZD, Brant J, Wiesner MR, J. Membr. Sci., 331(1-2), 1, 2009
  25. Essalhi M, Khayet M, J. Membr. Sci., 433, 167, 2013
  26. Mulder M, Basic principles of membrane technology, First Ed., Kluwer Academic Publishers, Dordrecht (1996).
  27. Fan HW, Peng YL, Chem. Eng. Sci., 79, 94, 2012
  28. Phattaranawik J, Jiraratananon R, Fane AG, J. Membr. Sci., 215(1-2), 75, 2003
  29. Cheng DY, Wiersma SJ, US Patent, 4,419,242 (1983).
  30. Niu HT, Lin T, Wang XG, J. Appl. Polym. Sci., 114(6), 3524, 2009
  31. Fujii Y, Kigoshi S, Iwatani H, Aoyama M, Fusaoka Y, J. Membr. Sci., 72, 73, 1992
  32. Feng C, Khulbe KC, Matsuura I, Gopal R, Kaur S, Rarnakrishna S, Khayet A, J. Membr. Sci., 311(1-2), 1, 2008
  33. Burger C, Hsiao BS, Chu B, Ann. Rev. Mater. Res., 36, 333, 2006
  34. Zhao ZZ, Li JQ, Yuan XY, Li X, Zhang YY, Sheng J, J. Appl. Polym. Sci., 97(2), 466, 2005
  35. Wang R, Liu Y, Li B, Hsiao BS, Chu B, J. Membr. Sci., 392, 167, 2012
  36. Essalhi M, Khayet M, J. Membr. Sci., 433, 167, 2013
  37. Fujii Y, Kigoshi S, Iwatani H, Aoyama M, J. Membr. Sci., 72, 53, 1992