Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 2923-2929, 2016
Synergistic effect in low temperature co-pyrolysis of sugarcane bagasse and lignite
Sugarcane bagasse was co-pyrolyzed with lignite in a fixed bed reactor to investigate the possible interaction during co-pyrolysis. GC-MS revealed that the concentration of phenols and aliphatic compounds in the tar increased with the addition of sugarcane bagasse, while the content of aromatic compounds had the contradictory tendency. The phenol content in co-pyrolyzed tar reached 20.35%, which increased by 142.26% compared with the calculated values. The sugarcane bagasse decomposition peak partly overlapped with lignite pyrolysis peak from TG-DTG curves, which meant more interaction between lignite and sugarcane bagasse during the pyrolysis process. The difference between the experimental and calculated values of pyrolysis products yield, tar components, DTG values and kinetics analysis indicated the synergetic effect between lignite and sugarcane bagasse.
[References]
  1. Edreis EMA, Luo GQ, Yao H, J. Anal. Appl. Pyrolysis, 107, 107, 2014
  2. Xian P, Lu Y, Wang XY, Zhong LY, Chemistry and Industry of Forest Products, 26, 65, 2006
  3. Mi T, Chen HP, Gao B, Liu DC, J. Huazhong Univ. Sci. Technol., 33, 71, 2005
  4. Liao YF, Zeng CC, Ma XQ, Song JH, Journal of South China University Technol., 41, 1, 2013
  5. Mao YB, Dong L, Dong YP, Liu WP, Chang JF, Yang S, Lv ZC, Fan PF, Bioresour. Technol., 181, 155, 2015
  6. Wu ZQ, Wang SZ, Zhao J, Chen L, Meng HY, Bioresour. Technol., 169, 220, 2014
  7. Song YY, Tahmasebi A, Yu JL, Bioresour. Technol., 174, 204, 2014
  8. Aboyade AO, Gorgens JF, Carrier M, Meyer EL, Knoetze JH, Fuel Process. Technol., 106, 310, 2013
  9. Krerkkaiwan S, Fushimi C, Tsutsumi A, Kuchonthara P, Fuel Process. Technol., 115, 11, 2013
  10. Yang X, Yuan CY, Xu J, Zhang WJ, Bioresour. Technol., 173, 1, 2014
  11. Aboyade AO, Carrier M, Meyer EL, Knoetze H, Gorgens JF, Energy Conv. Manag., 65, 198, 2013
  12. He XM, Pan Y, Chen K, Wu LS, Coal Conversion, 35, 11, 2012
  13. Kastanaki E, Vamvuka D, Grammelis P, Kakaras E, Fuel Process. Technol., 77, 159, 2002
  14. Collot AG, Zhuo Y, Dugwell DR, Kandiyoti R, Fuel, 78(6), 667, 1999
  15. Moghtaderi B, Meesri C, Wall TF, Fuel, 83(6), 745, 2004
  16. Aboyade AO, Carrier M, Meyer EL, Knoetze JH, Gorgens JF, Thermochim. Acta, 530, 95, 2012
  17. Zheng ZF, Huang YB, Jiang JC, Zhou L, Yang XQ, Journal of Southwest Forestry University, 30, 63, 2010
  18. Cheng XH, He XM, Dai D, Zhang D, Zeng XC, Chem. Ind. Eng. Prog., 34, 4385, 2015
  19. Weiland NT, Means NC, Morreale BD, Fuel, 94(1), 563, 2012
  20. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, Ellis N, Grace JR, Fuel, 117, 1204, 2014
  21. Cahyono RB, Rozhan AN, Yasuda N, Nomura T, Hosokai S, Kashiwaya Y, Akiyama T, Fuel Process. Technol., 113, 84, 2013
  22. Xiong J, Zhou ZJ, Xu SQ, Yu GS, CIESC J., 1, 192, 2011
  23. Xu SQ, Zhou ZJ, Dai ZH, Yu GS, Gong X, Journal of Chemical Engineering of Chinese Universities, 1, 2010
  24. Howaniec N, Smolinski A, Stanczyk K, Pichlak M, Int. J. Hydrog. Energy, 36(22), 14455, 2011
  25. Wu HX, Li HB, Zhao ZL, J. of Fuel Chem. Technol., 37, 538, 2009
  26. Yi S, He XM, Cheng XH, Lin HT, Zheng H, Chem. Eng., 44, 64, 2016
  27. Ahn S, Choi G, Kim D, Biomass Bioenerg., 71, 144, 2014
  28. Chen CX, Ma XQ, He Y, Bioresour. Technol., 117, 264, 2012