Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 2908-2914, 2016
Potential industrial application of Actinobacillus succinogenes NJ113 for pyruvic acid production by microaerobic fermentation
Actinobacillus succinogenes NJ113 is capable of microaerobic fermentation, which offers the possibility of a novel type of pyruvic acid production. A dissolved oxygen environment with stirring at 300 rpm was a key factor in the fermentative production of a maximum concentration of pyruvic acid. Potassium carbonate (K2CO3) was found to have a role in promoting pyruvic acid production, influencing the concentration of pyruvic acid and production of the by-product succinic acid. The final titer of pyruvic acid production was 36.8±0.1 g L-1 with an overall yield of 0.639±0.056 g g-1 glucose and 3.12±0.03mmol g-1 dry cell weight h-1. Significance and impact of the study: This study is the first to illustrate the advantage of using Actinobacillus succinogenes NJ113 with no genetic modification under microaerobic conditions for the production of pyruvic acid.
[References]
  1. Paul GC, Thomas CR, Adv. Biochem. Eng./Biotechnol., 60, 1, 1998
  2. McKinlay JB, Vieille C, Zeikus JG, Appl. Microbiol. Biotechnol., 76(4), 727, 2007
  3. Li Y, Chen J, Lun SY, Appl. Microbiol. Biotechnol., 57(4), 451, 2001
  4. Wang Q, He P, Lu D, Shen A, Jiang N, Lett. Appl. Microbiol., 35, 338, 2002
  5. Xu P, Qiu JH, Gao C, Ma CQ, J. Biosci. Bioeng., 105(3), 169, 2008
  6. Wendisch VF, Bott M, Eikmanns BJ, Curr. Opin. Microbiol., 9, 268, 2006
  7. Wieschalka S, Blombach B, Eikmanns BJ, Appl. Microbiol. Biotechnol., 94(2), 449, 2012
  8. McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C, Bmc Genomics, 11, 16, 2010
  9. Guettler MV, Rumler D, Jain MK, Int. J. Systematic Bacteriology, 49, 207, 1999
  10. Li QA, Wang D, Song ZY, Zhou W, Wu Y, Xing JM, Su ZG, Bioresour. Technol., 101(19), 7665, 2010
  11. Xi YI, Chen KQ, Xu R, Zhang JH, Bai XF, Jiang M, Wei P, Chen JY, Biochem. Eng. J., 69, 87, 2012
  12. Leonardo MR, Dailly Y, Clark DP, J. Bacteriol., 178, 6013, 1996
  13. Martinez I, Bennett GN, San KY, Metabolic Engineering, 12, 499, 2010
  14. Seo C, Lee HW, Suresh A, Yang JW, Jung JK, Kim YC, Korean J. Chem. Eng., 31(8), 1433, 2014
  15. Sawers G, Curr. Opin. Microbiol., 2, 181, 1999
  16. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C, Metabolic Engineering, 9, 177, 2007
  17. Wang J, Zhu JF, Bennett GN, San KY, Metabolic Engineering, 13, 328, 2011
  18. Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ, de Mattos MJT, J. Bacteriol., 182, 4934, 2000
  19. van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, van Dijken JP, Pronk JT, Appl. Environ. Microbiol., 70, 159, 2004
  20. Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki B, Takors R, Biotechnol. Bioeng., 85(6), 638, 2004
  21. Izumi Y, Matsumura Y, Tani Y, Yamada H, Agric. Biol. Chem., 46, 2673, 1982
  22. Yanase H, Mori N, Masuda M, Kita K, Shimao M, Kato N, J. Ferment. Bioeng., 73, 287, 1992