Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 2863-2868, 2016
Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (SAA) pretreatment and fermentation to succinic acid using Escherichia coli AFP184
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions, including enzymatic hydrolysis and fermentation using genetically engineered E. coli (AFP184). The SAA pretreatment (using a 15% w/w NH4OH solution at a solid-to-liquid ratio of 1 : 10 at 60 ℃ for 24 h) removed 20-38% of lignin and significantly improved the digestibility of the treated solid (85-99% of glucan digestibility). Following the enzymatic hydrolysis, the sugar-rich hydrolysate was subjected to dilute sulfuric acid treatment (1 wt% sulfuric acid and 120 ℃ for 1 h), which hydrolyzed the oligosaccharides in the hydrolysate into fermentable monomeric sugars. The mixed sugar hydrolysates containing hexose and pentose obtained from the two-step hydrolysis and SAA pretreatment were fermented to succinic acid using a genetically engineered microorganism, Escherichia coli AFP184, for evaluating the fermentability. Engineered E. coli AFP184 effectively converted soluble sugars in the hydrolysate to succinic acid (20.7 g/L), and the production rate and yield were further enhanced with additional nutrients; the highest concentration of succinic acid was 26.3 g/L for 48 h of fermentation.
[References]
  1. Demirbas A, Energy Conv. Manag., 50(9), 2239, 2009
  2. Ethanol Industry Outlook, Renewable Fuels Association (RFA, website; http://www.ethanolrfa.org/), January, Washington, DC, USA (2015).
  3. Pocket guide to ethanol 2015, Renewable Fuels Association. Available from: http://www.ethanolrfa.org/pages/rfa-pocket-guide-toethanol, Accessed August 7, 2015 (2015).
  4. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR, Appl. Biochem. Biotechnol., 125(2), 77, 2005
  5. Oh IJ, Lee HW, Park CH, Lee SY, Lee J, J. Microbiol. Biotechnol., 18(5), 908, 2008
  6. Sanchez AM, Bennett GN, San KY, Biotechnol. Prog., 21(2), 358, 2005
  7. Zeikus JG, Jain MK, Elankovan P, Appl. Microbiol. Biotechnol., 51(5), 545, 1999
  8. Cornils B, Lappe P, “Dicarboxylic acids, aliphatic” in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, DOI:10.1002/14356007.a08_523 (2006).
  9. Bai B, Zhou JM, Yang MH, Liu YL, Xu XH, Xing JM, Bioresour. Technol., 185, 56, 2015
  10. Kim TH, Taylor F, Hicks KB, Bioresour. Technol., 99(13), 5694, 2008
  11. Yoo CG, Nghiem NP, Hicks KB, Kim TH, Appl. Biochem. Biotechnol., 169(8), 2430, 2013
  12. Andersson C, Hodge D, Berglund KA, Rova U, Biotechnol. Prog., 23(2), 381, 2007
  13. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, Determination of structural carbohydrates and lignin in biomass, Vol NREL/TP-510-42618 (2012).
  14. Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP, Biotechnol. Bioeng., 108(1), 22, 2011
  15. Nghiem NP, Kim TH, Yoo CG, Hicks KB, Appl. Biochem. Biotechnol., 171(2), 341, 2013
  16. Kim TH, Korean J. Chem. Eng., 28(11), 2156, 2011
  17. Donnelly MI, Sanville-Millard CY, Nghiem NP, US Patent, 6,743,610 (2004).