Issue
Korean Journal of Chemical Engineering,
Vol.33, No.10, 2858-2862, 2016
Liquefaction and characterization of residue of oleaginous yeast in polyhydric alcohols
The residue of oleaginous yeast (ROY) was liquefied in polyhydric alcohols using sulfuric acid as catalyst. The effects of some liquefaction conditions on the liquefied residue rate, such as liquefaction temperature, catalyst loading, reaction time, glycerol concentration and solvent/ROY ratio, were discussed. The liquefied residue rate decreased as the reaction time, liquefaction temperature, catalyst loading, solvent/ROY ratio increased. The re-polymerization of liquefied products was favored in later stage reaction. Higher catalyst loading and lower solvent/ROY ratio could accelerate the re-polymerization of liquefied products; thus the liquefied residue increased. Fourier transform infrared (FTIR) analyses showed that the main component of ROY is polysaccharide. The gas chromatography and mass spectrometry (GC-MS) analysis showed that liquefied products of ROY included alcohols, acids, ketones, aldehydes, amide, ester and their derivatives.
[References]
  1. Hegel PE, Camy S, Destrac P, Condoret JS, J. Supercrit. Fluids, 58(1), 68, 2011
  2. Zhang XL, Yan S, Tyagi RD, Drogui P, Surampalli RY, Bioresour. Technol., 158, 253, 2014
  3. Depree J, Emerson GW, Sullivan PA, J. Gen. Microbiol., 139, 2123, 1993
  4. Hu S, Luo X, Li Y, ChemSusChem, 7, 66, 2014
  5. Hu SJ, Wan CX, Li YB, Bioresour. Technol., 103(1), 227, 2012
  6. D’Souza J, Yan N, Acs Sustainable Chem. Eng., 1, 534, 2013
  7. Zhang T, Zhou YJ, Liu DH, Petrus L, Bioresour. Technol., 98(7), 1454, 2007
  8. Sunphorka S, Prapaiwatcharapan K, Hinchiranan N, Kangvansaichol K, Kuchonthara P, Korean J. Chem. Eng., 32(1), 79, 2015
  9. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, Pua FL, Bioresour. Technol., 102(3), 3521, 2011
  10. Yip J, Chen MJ, Szeto YS, Yan SC, Bioresour. Technol., 100(24), 6674, 2009
  11. Lu J, Li XZ, Yang RF, Zhao J, Liu YJ, Qu YB, Chem. Eng. J., 247, 142, 2014
  12. Zhang H, Ding F, Luo C, Xiong L, Chen X, Ind. Crop. Prod., 39, 47, 2012
  13. Zhang HR, Yang HJ, Guo HJ, Huang C, Xiong L, Chen XD, Appl. Energy, 113, 1596, 2014
  14. Virkki L, Johansson L, Ylinen M, Maunu S, Ekholm P, Carbohydr. Polym., 59, 357, 2005
  15. Nie S, Xie M, Fu Z, Wan Y, Yan A, Carbohydr. Polym., 71, 626, 2008
  16. Gutierrez A, Prieto A, Martinez AT, Carbohydr. Res., 281, 143, 1996
  17. Hu SJ, Li YB, Bioresour. Technol., 161, 410, 2014
  18. Kurimoto Y, Doi S, Tamura Y, Holzforschung, 53, 617, 1999
  19. Briones R, Serrano L, Llano-Ponte R, Labidi J, Chem. Eng. J., 175, 169, 2011
  20. Yao YG, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 60(11), 1939, 1996
  21. Huang C, Chen XF, Xiong L, Chen XD, Ma LI, Chen Y, Biotechnol. Adv., 31, 129, 2013
  22. Jasiukaityte E, Kunaver M, Strli M, Cellulose., 16, 393, 2009