Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2703-2710, 2016
Hydrochar preparation from black liquor by CO2 assisted hydrothermal treatment: Optimization of its performance for Pb2+ removal
Hydrochar was produced from hydrothermal treatment of corn straw black liquor. Response surface methodology (RSM) and the central composite design (CCD) were employed for determination of optimal char with maximum Pb2+ removal capacity. The operational parameters such as hydrothermal temperature (℃), duration (min) and solid liquid ratio (LSR) were chosen as independent variables in CCD. The statistical analysis indicates that the effects of hydrothermal temperature, duration, LSR and combined effect of hydrothermal temperature and duration are all significant for the Pb2+ removal capacity. The optimal condition for achieving the maximum Pb2+ adsorption capacity is obtained as the following: hydrothermal temperature (205 ℃), duration (28min), LSR (12) with Pb2+ removal capacity reaching 47mg/g. The BET specific surface area of char prepared at optimal conditions could reach 85m2/g.
[References]
  1. Pullini D, Siong V, Tamvakos D, Ortega BL, Sgroi MF, Veca A, Glanz C, Kolaric I, Pruna A, Compos. Sci. Technol., 112, 16, 2015
  2. Ngah WSW, Hanafiah MAKM, Bioresour. Technol., 99(10), 3935, 2008
  3. Ahmaruzzaman M, Adv. Colloid Interface Sci., 166, 36, 2011
  4. Sun Y, Wei J, Yao MS, Yang G, Asia-Pac. J. Chem. Eng., 7, 547, 2012
  5. Sun Y, Zhang JP, Yang G, Li ZH, Environ. Technol., 28, 491, 2007
  6. Nancharaiah YV, Mohan SV, Lens PNL, Bioresour. Technol., 195, 102, 2015
  7. Srivastava V, Singh PK, Weng CH, Sharma YC, Pol. J. Chem. Technol., 13, 1, 2011
  8. Singh J, Mishra NS, Uma, Banerjee S, Sharma YC, Bioresources, 6, 2732, 2011
  9. Wang YX, Ngo HH, Guo WS, Sci. Total Environ., 533, 32, 2015
  10. Adibfar M, Kaghazchi T, Asasian N, Soleimani M, Chem. Eng. Technol., 37(6), 979, 2014
  11. Kwon SH, Lee E, Kim BS, Kim SG, Lee BJ, Kim MS, Jung JC, Korean J. Chem. Eng., 32(2), 248, 2015
  12. Syed-Hassan SSA, Md Zaini MS, Korean J. Chem. Eng., DOI:10.1007/s11814-016-0072-z, 2016
  13. Sun Y, Yang G, Zhang JP, Wang YS, Yao MS, Chem. Eng. Technol., 35(2), 309, 2012
  14. Song XF, Ji XY, Bie HP, Liu QQ, Bie RS, Fuel, 159, 89, 2015
  15. Hadi P, Xu M, Ning C, Lin CSK, McKay G, Chem. Eng. J., 260, 895, 2015
  16. Moradi SE, Korean J. Chem. Eng., 31(9), 1651, 2014
  17. Mahmoudi K, Hosni K, Hamdi N, Srasra E, Korean J. Chem. Eng., 32(2), 274, 2015
  18. Zhang SL, Tao LC, Jiang M, Gou GJ, Zhou ZW, Mater. Lett., 157, 281, 2015
  19. Sun Y, Wei J, Wang YS, Yang G, Zhang JP, Environ. Technol., 31, 53, 2010
  20. Sun Y, Zhang JP, Yang G, Li ZH, Chem. Biochem. Eng. Q, 21, 169, 2007
  21. Sun Y, Yang G, Wen C, Zhang L, Wang YS, Environ. Prog. Sustain, 33, 581, 2014
  22. Tekin K, Karagoz S, Bektas S, Renew. Sust. Energ. Rev., 40, 673, 2014
  23. Sun Y, Zhang JP, Wen C, Zhang L, Chem. Eng. Process., 104, 1, 2016
  24. Zhang JP, Sun Y, Woo MW, Zhang L, Xu KZ, J. Taiwan Inst. Chem. E, 59, 395, 2016
  25. Sun Y, Yang G, Zhang JP, Li ZH, Spectrosc. Spect. Anal., 27, 371, 2007
  26. Sun Y, Zhang JP, Yang G, Li ZH, Spectrosc. Spect. Anal., 27, 1424, 2007
  27. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  28. Hu J, Li BJ, Huang LY, Zuo J, Zhang W, Ying WC, Matsumoto MR, Environ. Prog. Sustain, 32, 512, 2013
  29. Ensuncho-Munoz AE, Carriazo JG, Environ. Technol., 36, 547, 2015
  30. Richard MA, Benard P, Chahine R, Adsorption, 15, 53, 2009
  31. Richard MA, Benard P, Chahine R, Adsorption, 15, 43, 2009
  32. Sych NV, Trofymenko SI, Poddubnaya OI, Tsyba MM, Sapsay VI, Klymchuk DO, Puziy AM, Appl. Surf. Sci., 261, 75, 2012
  33. Sun Y, Wei J, Zhang JP, Yang G, J. Natural Gas Sci. Eng., 28, 173, 2016
  34. Sun Y, Zhang JP, Zhang L, Environ. Prog. Sustain, In Press DOI:10.1002/ep.12365., 2016
  35. Chaudhary N, Balomajumder C, J. Taiwan Inst. Chem. E, 45, 852, 2014
  36. Sun Y, Yang G, Jia ZH, Wen C, Zhang L, Chem. Ind. Chem. Eng. Q, 20, 531, 2014
  37. Sun Y, Zhang JP, Wen C, Li ZH, J. Taiwan Inst. Chem. E, DOI:10.1016/j.jtice.2016.1002.1030., 2016
  38. Sun Y, Zhang JP, Yang G, Li ZH, Environ. Prog., 26, 78, 2007
  39. Sun Y, Mang JP, Yang G, Li ZH, Spectrosc. Spect. Anal., 27, 1997, 2007
  40. Huang LH, Kong JJ, Wang WL, Zhang CL, Niu SF, Gao BY, Desalination, 286, 268, 2012
  41. Chia CH, Gong B, Joseph SD, Marjo CE, Munroe P, Rich AM, Vib Spectrosc, 62, 248, 2012
  42. Chen T, Zhou ZY, Han R, Meng RH, Wang HT, Lu WJ, Chemosphere, 134, 286, 2015
  43. Shen BX, Chen JH, Yue SJ, Li GL, Fuel, 156, 47, 2015
  44. Li GL, Shen BX, Li YW, Zhao B, Wang FM, He C, Wang YY, Zhang M, J. Hazard. Mater., 298, 162, 2015
  45. Ho YS, Ng JCY, McKay G, Sep. Sci. Technol., 36(2), 241, 2001
  46. Ruziwa NCD, Gwenzi W, Pumure I, J. Environ. Chem. Eng., 3, 2528, 2015
  47. Liu ZG, Zhang FS, J. Hazard. Mater., 167(1-3), 933, 2009
  48. Elaigwu SE, Rocher V, Kyriakou G, Greenway GM, J. Ind. Eng. Chem., 20(5), 3467, 2014
  49. Ali IO, Hassan AM, Shaaban SM, Soliman KS, Sep. Purif. Technol., 83, 38, 2011
  50. Guo H, Ren YZ, Sun XL, Xu YD, Li XM, Zhang TC, Kang JX, Liu DQ, Appl. Surf. Sci., 283, 660, 2013
  51. El-Sofany EA, Zaher WF, Aly HF, J. Hazard. Mater., 165(1-3), 623, 2009
  52. Bernardo M, Mendes S, Lapa N, Goncalves M, Mendes B, Pinto F, Lopes H, Fonseca I, J. Colloid Interface Sci., 409, 158, 2013
  53. Mohan S, Gandhimathi R, J. Hazard. Mater., 169(1-3), 351, 2009
  54. Acharya J, Sahu JN, Mohanty CR, Meikap BC, Chem. Eng. J., 149(1-3), 249, 2009
  55. Do XH, Lee BK, J. Environ. Manage., 131, 375, 2013