Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2691-2698, 2016
Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica
Brown alga Saccharina japonica was pyrolyzed in a fixed bed reactor under conditions intended to maximize the yield of bio-oil and bio-char. The results revealed that the product distribution of bio-oil, bio-char, and gas was considerably influenced by the pyrolysis temperature (430-530 ℃) and holding time (4-10min). The maximum yields of bio-oil and bio-char were approximately 48.4 and 32.3wt%, respectively, when prepared at 450 oC for 8min with a carrier gas flow rate of 2.2 cm/s. The fuel properties of dewatered S. japonica bio-oil (DSB) included higher heating value (HHV), kinematic viscosity, density, moisture and ash content, pH, and flash and pour point. The possibility of blending 5-20 vol% DSB with No. 6 fuel oil (Bunker C oil) was also examined. The physicochemical properties of the bio-char exhibited decreased carbon and HHV, and increased inorganic elements and surface area, with increasing pyrolysis temperature.
[References]
  1. Gao K, McKinley KR, J. Appl. Phycol., 6, 45, 1994
  2. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y, Macroalgae as a biomass feedstock: A preliminary analysis, Pacific Northwest National Laboratory, Report No.: PNNL-19944, Sponsored by the US Department of Energy (2010).
  3. Wei N, Quarterman J, Jin YS, Trends Biotechnol., 31, 70, 2013
  4. Bixler HJ, Porse H, J. Appl. Phycol., 23, 321, 2011
  5. Jiao G, Yu G, Zhang J, Ewart HS, Mar. Drugs, 9, 196, 2011
  6. Sivagnanam S, Yin S, Choi JH, Park YB, Woo HC, Chun BS, Mar. Drugs, 13, 3422, 2015
  7. FAO Yearbook 2010: Fishery and Aquaculture Statistics, Food and Agriculture Organization of the United Nations (FAO), 2012. [Online]. Available: ftp://ftp.fao.org/FI/CDrom/CD_yearbook_2010/booklet/ba0058t.pdf. [Accessed: 05 January 2015].
  8. Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182, 2013
  9. Song M, Pham HD, Seon J, Woo HC, Renew. Sust. Energ. Rev., 50, 782, 2015
  10. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y, Science, 335(6066), 308, 2012
  11. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi , Nature, 505(7482), 239, 2014
  12. Pham TN, Nam WJ, Jeon YJ, Yoon HH, Bioresour. Technol., 124, 500, 2012
  13. Song M, Pham HD, Seon J, Woo HC, Korean J. Chem. Eng., 32(4), 567, 2015
  14. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494, 2008
  15. Anastasakis K, Ross AB, Jones JM, Fuel, 90(2), 598, 2011
  16. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512, 2011
  17. Kim SS, Ly HV, Choi GH, Kim J, Woo HC, Bioresour. Technol., 123, 445, 2012
  18. Wang S, Wang Q, Jiang XM, Han XX, Ji HS, Energy Conv. Manag., 68, 273, 2013
  19. Choi J, Choi JW, Suh DJ, Ha JM, Hwang JW, Jung HW, Lee KY, Woo HC, Energy Conv. Manag., 86, 371, 2014
  20. Xiu S, Shahbazi A, Renew. Sust. Energ. Rev., 16, 4406, 2012
  21. Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Sorensen HR, Hvilsted S, Energy Fuels, 27, 1399, 2013
  22. Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87, 2007
  23. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044, 2006
  24. Bridgwater AV, Peacocke GVC, Renew. Sust. Energ. Rev., 4, 1, 2000
  25. Brammer JG, Bridgwater AV, Renew. Sust. Energ. Rev., 3, 243, 1999
  26. Channiwala SA, Parikh PP, Fuel, 81(8), 1051, 2002
  27. Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM, Fuel, 87(7), 1230, 2008
  28. Hwang H, Oh S, Cho TS, Choi IG, Choi JW, Bioresour. Technol., 150, 359, 2013
  29. Bridgwater AV, Biomass Bioenerg., 38, 68, 2012
  30. Ayllon M, Aznar M, Sanchez JL, Gea G, Arauzo J, Chem. Eng. J., 121(2-3), 85, 2006
  31. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262, 2011
  32. Maggi R, Delmon B, Fuel, 73, 671, 1994
  33. Choi JW, Choi JH, Suh DJ, Kim H, J. Anal. Appl. Pyrolysis, 112, 141, 2015
  34. Lu Q, Li WZ, Zhu XF, Energy Conv. Manag., 50(5), 1376, 2009
  35. Oasmaa A, Czernik S, Energy Fuels, 13(4), 914, 1999
  36. Chiaramonti D, Oasmaa A, Solantausta Y, Renew. Sust. Energ. Rev., 11, 1056, 2007
  37. Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D, Appl. Energy, 116, 178, 2014
  38. Zheng JL, Wei Q, Biomass Bioenerg., 35(5), 1804, 2011
  39. Czernik S, Bridgwater AV, Energy Fuels, 18(2), 590, 2004
  40. Antal MJ, Gronli M, Ind. Eng. Chem. Res., 42(8), 1619, 2003
  41. Bird MI, Wurster CM, Silva PHD, Bass AM, de Nys R, Bioresour. Technol., 102(2), 1886, 2011
  42. Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T, Environ. Pollut., 159, 3269, 2011
  43. Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H, Environ. Sci. Pollut. Res., 20, 8472, 2013
  44. Lehmann J, Nature, 447, 143, 2007