Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2638-2643, 2016
Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers
The interactions of biomass components (hemicellulose, cellulose, and lignin) during co-pyrolysis were investigated in a thermogravimetric analyzer (TGA) as well as a self-designed Macro-TGA with higher heating rate and larger amount of sample. The overlap ratio (OR) was used to evaluate the interaction of biomass components quantitatively. In TGA, the pyrolysis of xylan was not significantly affected by cellulose, whereas the pyrolysis of cellulose was markedly influenced by xylan. The interactions between xylan and lignin were weak with an overlap ratio of 0.9869, whereas co-pyrolysis of cellulose and lignin was strongly inhibited by interactions with the overlap ratio of 0.9737. In Macro-TGA, interactions between components were stronger than that in TGA due to more considerable heat and mass transfer effect.
[References]
  1. Guan QQ, Wei CH, Chai XD, Ning P, Tian SL, Gu JJ, Chen QL, Miao RR, Chin. J. Chem. Eng., 23(1), 205, 2015
  2. Wu C, Budarin VL, Gronnow MJ, De Bruyn M, Onwudili JA, Clark JH, Williams PT, J. Anal. Appl. Pyrolysis, 107, 276, 2014
  3. Giudicianni P, Cardone G, Ragucci R, J. Anal. Appl. Pyrolysis, 100, 213, 2013
  4. Hosoya T, Kawamoto H, Saka S, J. Anal. Appl. Pyrolysis, 85, 237, 2009
  5. Heidari A, Stahl R, Younesi H, Rashidi A, Troeger N, Ghoreyshi AA, J. Ind. Eng. Chem., 20(4), 2594, 2014
  6. Burhenne L, Messmer J, Aicher T, Laborie M, J. Anal. Appl. Pyrolysis, 101, 177, 2013
  7. Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT, RSC Adv., 5, 11371, 2015
  8. Di Blasi C, Lanzetta M, J. Anal. Appl. Pyrolysis, 40-41, 287, 1997
  9. Dumitriu S, Polysaccharides: Structural Diversity and Functional Versatility, 2nd Ed., CRC Press, Boca Raton, Florida (2004).
  10. Shen DK, Gu S, Bioresour. Technol., 100(24), 6496, 2009
  11. Hage RE, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A, Polym. Degrad. Stabil., 94, 1632, 2009
  12. Chatel G, Rogers RD, ACS Sustain. Chem. Eng., 2, 322, 2014
  13. Zhou H, Wu CF, Onwudili JA, Meng AH, Zhang YG, Williams PT, Energy Fuels, 28(10), 6371, 2014
  14. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA, J. Anal. Appl. Pyrolysis, 105, 143, 2014
  15. Hosoya T, Kawamoto H, Saka S, J. Anal. Appl. Pyrolysis, 78, 328, 2007
  16. Chayaporn S, Sungsuk P, Sunphorka S, Kuchonthara P, Piumsomboon P, Chalermsinsuwan B, Korean J. Chem. Eng., 32(6), 1081, 2015
  17. Wang G, Li W, Li BQ, Chen HK, Fuel, 87(4-5), 552, 2008
  18. Worasuwannarak N, Sonobe T, Tanthapanichakoon W, J. Anal. Appl. Pyrolysis, 78, 265, 2007
  19. Cho JM, Chu S, Dauenhauer PJ, Huber GW, Green Chem., 14, 428, 2012
  20. Zhang J, Chen T, Wu J, Wu J, RSC Adv., 4, 17513, 2014
  21. Long YF, Ruan L, Lv XY, Lv YJ, Su J, Wen YX, Chin. J. Chem. Eng., 23(10), 1691, 2015
  22. Soysa R, Choi YS, Choi SK, Kim SJ, Han SY, Korean J. Chem. Eng., 33(2), 603, 2016
  23. Chattopadhyay J, Kim CH, Kim RH, Pak DW, J. Ind. Eng. Chem., 15(1), 72, 2009
  24. Seo DK, Park SS, Kim YT, Hwang J, Yu TU, J. Anal. Appl. Pyrolysis, 92, 209, 2011
  25. Biagini E, Fantei A, Tognotti L, Thermochim. Acta, 472(1-2), 55, 2008
  26. Zhou H, Wu C, Meng A, Zhang Y, Williams PT, J. Anal. Appl. Pyrolysis, 110, 264, 2014
  27. Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y, RSC Adv., 5, 26509, 2015
  28. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781, 2007
  29. Shen DK, Gu S, Bridgwater AV, J. Anal. Appl. Pyrolysis, 87, 199, 2010
  30. Zhou H, Long YQ, Meng AH, Li QH, Zhang YG, Thermochim. Acta, 566, 36, 2013
  31. Hosoya T, Kawamoto H, Saka S, J. Anal. Appl. Pyrolysis, 80, 118, 2007
  32. Wang SR, Guo XJ, Wang KG, Luo ZY, J. Anal. Appl. Pyrolysis, 91, 183, 2011
  33. Horne PA, Williams PT, Renew. Energy, 7, 131, 1996
  34. Couhert C, Commandre JM, Salvador S, Fuel, 88(3), 408, 2009