Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2582-2588, 2016
Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition
Graphene aerogel was modified with polyaniline and Fe precursors to produce Fe/N/C catalysts for electrocatalytic oxygen reduction reaction in the acidic condition. The graphene aerogel was produced by a simple hydrothermal treatment of graphene oxide dispersion with a high surface area. Aniline was polymerized with the graphene aerogel powder, and the pyrolysis of the resulting material with FeCl3 produced Fe/N/C catalyst. The loading amount on the electrode and the catalyst ink concentration was carefully selected to avoid the mass transfer limitation inside the catalyst layer. The pyrolysis temperature affected the states of nitrogen sites on the catalyst; the sample prepared at 900 ℃ presented the highest mass activity. The sulfur was also doped with various amounts of FeSO4 with enhanced mass activity of up to 2.1mA/mg at 0.8 V in 0.5M H2SO4 solution. Its durability was also tested by repeating cyclic voltammetry in a range of 0.6-1.1V 5000 cycles. This graphene-aerogel-based carbon catalysts showed improved activity and durability for the oxygen reduction reaction in the acidic condition.
[References]
  1. Damjanovic A, Genshaw MA, Bockris JOM, J. Chem. Phys., 45, 4057, 1966
  2. Wang B, J. Power Sources, 152(1), 1, 2005
  3. Jasinski R, Nature, 201, 1212, 1964
  4. Lefevre M, Proietti E, Jaouen F, Dodelet JP, Science, 324, 71, 2009
  5. Liang HW, Wei W, Wu ZS, Feng XL, Mullen K, J. Am. Ceram. Soc., 135, 16002, 2013
  6. Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443, 2011
  7. Kattel S, Atanassov P, Kiefer B, Phys. Chem. Chem. Phys., 15, 148, 2013
  8. Jeong B, Shin D, Jeon H, Ocon JD, Mun BS, Baik J, Shin HJ, Lee J, ChemSusChem, 7, 1289, 2014
  9. Yasuda S, Yu L, Kim J, Murakoshi K, Chem. Commun., 49, 9627, 2013
  10. Ouyang WP, Zeng DR, Yu X, Xie FY, Zhang WH, Chen J, Yan J, Xie FJ, Wang L, Meng H, Yuan DS, Int. J. Hydrog. Energy, 39(28), 15996, 2014
  11. Tylus U, Jia QY, Strickland K, Ramaswamy N, Serov A, Atanassov P, Mukerjee S, J. Phys. Chem. C, 118, 8999, 2014
  12. Zitolo A, Goellner V, Armel V, Sougrati MT, Mineva T, Stievano L, Fonda E, Jaouen F, Nat. Mater., 14(9), 937, 2015
  13. Muthukrishnan A, Nabae Y, Okajima T, Ohsaka T, ACS Catal., 5, 5194, 2015
  14. Li YG, Zhou W, Wang HL, Xie LM, Liang YY, Wei F, Idrobo JC, Pennycook SJ, Dai HJ, Nat. Nanotechnol., 7(6), 394, 2012
  15. Cheon JY, Kim T, Choi Y, Jeong HY, Kim MG, Sa YJ, Kim J, Lee Z, Yang TH, Kwon K, Terasaki O, Park GG, Adzic RR, Joo SH, Sci. Rep., 3, 2013
  16. Le LT, Ervin MH, Qiu HW, Fuchs BE, Lee WY, Electrochem. Commun., 13, 355, 2011
  17. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS, Nano Lett., 8, 3498, 2008
  18. Wang DW, Min YG, Yu YH, Peng B, J. Colloid Interface Sci., 417, 270, 2014
  19. Liang MH, Zhi LJ, J. Mater. Chem., 19, 5871, 2009
  20. Pumera M, Energy Environ. Sci., 4, 668, 2011
  21. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN, Angew. Chem.-Int. Edit., 48, 4785, 2009
  22. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS, Nat. Mater., 6(9), 652, 2007
  23. Hu HW, Xin JH, Hu H, Wang XW, Kong YY, Appl. Catal. A: Gen., 492, 1, 2015
  24. Si YC, Samulski ET, Chem. Mater., 20, 6792, 2008
  25. Yan J, Wei T, Shao B, Ma FQ, Fan ZJ, Zhang ML, Zheng C, Shang YC, Qian WZ, Wei F, Carbon, 48, 1731, 2010
  26. Chung MW, Choi CH, Lee SY, Woo SI, Nano Energy, 11, 526, 2015
  27. Li C, Shi GQ, Adv. Mater., 26(24), 3992, 2014
  28. Jiang LL, Fan ZJ, Nanoscale, 6, 1922, 2014
  29. Han S, Wu DQ, Li S, Zhang F, Feng XL, Adv. Mater., 26(6), 849, 2014
  30. Li C, Shi GQ, Nanoscale, 4, 5549, 2012
  31. Chabot V, Higgins D, Yu AP, Xiao XC, Chen ZW, Zhang JJ, Energy Environ. Sci., 7, 1564, 2014
  32. Huang XD, Qian K, Yang J, Zhang J, Li L, Yu CZ, Zhao DY, Adv. Mater., 24(32), 4419, 2012
  33. Xu YX, Sheng KX, Li C, Shi GQ, ACS Nano, 4, 4324, 2010
  34. Ghosh D, Giri S, Mandal A, Das CK, Appl. Surf. Sci., 276, 120, 2013
  35. Izumi CMS, Constantino VRL, Ferreira AMC, Temperini MLA, Synth. Met., 156, 654, 2006
  36. Wu G, Zhongwei C, Kateryna A, Fernando HG, Zelenay P, ECS Trans., 16, 159, 2008
  37. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806, 2010
  38. Choi CH, Lim HK, Chung MW, Park JC, Shin H, Kim H, Woo SI, J. Am. Chem. Soc., 136(25), 9070, 2014
  39. Liang J, Jiao Y, Jaroniec M, Qiao SZ, Angew. Chem.-Int. Edit., 51, 11496, 2012
  40. Zhang LP, Xia ZH, J. Phys. Chem. C, 115, 11170, 2011
  41. Choi CH, Baldizzone C, Grote JP, Schuppert AK, Jaouen F, Mayrhofer KJJ, Angew. Chem.-Int. Edit., 54, 12753, 2015
  42. Zhou XJ, Bai ZY, Wu MJ, Qiao JL, Chen ZW, J. Mater. Chem. A, 3, 3343, 2015
  43. Videla AHAM, Ban S, Specchia S, Zhang L, Zhang JJ, Carbon, 76, 386, 2014