Issue
Korean Journal of Chemical Engineering,
Vol.33, No.9, 2538-2546, 2016
A two-dimensional discrete lumped model for a trickle-bed vacuum gas oil hydrocracking reactor
A two-dimensional (2D) computational fluid dynamics model based on discrete lumping approach was used to predict the product yields of a pilot scale vacuum gas oil (VGO) hydrocracking reactor. This model was developed by solving mass conservation equations in conjunction with the continuity and momentum balances in the z-r cylindrical plane. The kinetic parameters of the model were estimated from the experimental data, and validated by using actual values. Results show that the proposed model can appreciably improve the accuracy of the yield prediction in comparison to the predicted value using the 1D model. Moreover, it is confirmed that the order of magnitude of the radial liquid velocity against the axial one is considerably low, and there is no significant pressure drop along the r-direction. Additionally, results show that two-dimensional model is a reliable tool for evaluating the catalyst performance and also for designing commercial reactors.
[References]
  1. Laxminarasimhan CS, Verma RP, Ramachandran PA, AIChE J., 42(9), 2645, 1996
  2. Lee J, Hwang S, Lee SB, Song IK, Korean J. Chem. Eng., 27(6), 1755, 2010
  3. Yoon S, Choi WC, Park YK, Kim HY, Lee CW, Korean J. Chem. Eng., 27(1), 62, 2010
  4. Balasubramanian P, Pushpavanam S, Fuel, 87(8-9), 1660, 2008
  5. Abghari SZ, Darian JT, Karimzadeh R, Omidkhah MR, Korean J. Chem. Eng., 25(4), 681, 2008
  6. Abghari SZ, Shokri S, Baloochi B, Marvast MA, Ghanizadeh S, Behroozi A, Korean J. Chem. Eng., 28(1), 93, 2011
  7. Hayati R, Abghari SZ, Sadighi S, Bayat M, Korean J. Chem. Eng., 32(4), 629, 2015
  8. Bozzano G, Dente M, Carlucci F, Comput. Chem. Eng., 29(6), 1439, 2005
  9. Elizalde I, Rodriguez MA, Ancheyta J, Appl. Catal. A: Gen., 365(2), 237, 2009
  10. Elizalde I, Ancheyta J, Fuel, 90(12), 3542, 2011
  11. Huizenga P, Kuipers JAM, van Swaaij WPM, Ind. Eng. Chem. Res., 38(1), 98, 1999
  12. Aoyagi K, McCaffrey WC, Gray MR, Pet. Sci. Technol., 21, 997, 2003
  13. Aboul-Gheit K, Erdol Kohle Erdgas, 105, 1278, 1989
  14. Valavarasu G, Bhaskar M, Sairam B, Pet. Sci. Technol., 23, 1323, 2005
  15. de Almeida RM, Guirardello R, Catal. Today, 109(1-4), 104, 2005
  16. Sadighi S, Arshad A, Mohaddecy SR, Int. J. Chem. React. Eng., 8(A1), 1, 2010
  17. Sadighi S, Ahmad A, Can. J. Chem. Eng., 97, 1077, 2013
  18. Jakobsen HA, Lindborg H, Handeland V, Comput. Chem. Eng., 26, 333, 2007
  19. Gunjal PR, Ranade VV, Chem. Eng. Sci., 62(18-20), 5512, 2007
  20. Lopes RJG, Quinta-Ferreira RM, Chem. Eng. Sci., 64(8), 1806, 2009
  21. Augier F, Koudil A, Royon-Lebeaud A, Muszynski L, Yanouri Q, Chem. Eng. Sci., 65(1), 255, 2010
  22. Lopes RJG, de Sousa VSL, Quinta-Ferreira RM, Chem. Eng. Sci., 66(14), 3280, 2011
  23. Bandari MR, Behjat Y, Shahhosseini S, Int. J. Chem. React. Eng., 10(1), 1, 2012
  24. Sadighi S, Ahmad A, Shirvani M, Int. J. Chem. React. Eng., 9(A4), 1, 2011
  25. Sadighi S, Ahmad A, Rashidzadeh M, Korean J. Chem. Eng., 27(4), 1099, 2010
  26. Tailleur RG, Comput. Chem. Eng., 29(11-12), 2404, 2005
  27. Mary G, Chaouki J, Luck F, Int. J. Chem. React. Eng., 7(A1), 1, 2009
  28. Liu SJ, Masliyah JH, J. Non-Newton. Fluid Mech., 86(1-2), 229, 1999
  29. Mills PL, Dudukovic MP, Ind. Eng. Chem. Fundam., 18, 2, 1979
  30. Mederos FS, Ancheyta J, Chen JW, Appl. Catal. A: Gen., 355(1-2), 1, 2009
  31. Latini G, Grifoni RC, Passerini G, UK, WIT Press (2006).
  32. Botchwey C, Dalai AK, Adjaye J, Can. J. Chem. Eng., 82(3), 478, 2004
  33. Aldahhan MH, Larachi F, Dudukovic MP, Laurent A, Ind. Eng. Chem. Res., 36(8), 3292, 1997