Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1964-1970, 2016
HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating
5-Hydroxymethyl furfural (HMF) is known as a noteworthy platform in a biorefinery concept. HMF was prepared via fructose dehydration in aqueous and organic media, using three methods, i.e., conventional heating, ultrasonication and microwave irradiation. Water, methyl isobutyl ketone (MIBK), methyl ethyl ketone and ethyl acetate were used as media for HCl-catalyzed synthesis of HMF. FTIR and 1H-NMR spectroscopies were used for analysis. The synthesis yield and selectivity were investigated to optimize variables such as fructose concentration, catalyst dosage, temperature, irradiation power, solvent, and the reaction atmosphere. It was found that the yield in the organic media was superior to that of the aqueous ones. In addition, nitrogen atmosphere favored higher yield than air, due to lack of HMF oxidation. As conclusion, the highest yields of the conventional, ultrasonicated and microwave-assisted reactions were 87, 53, and 38%, respectively. In the reactions ultrasonically promoted, the reaction time scale was highly reduced from hours to minutes. The yield was varied with treatment times, so that ultrasonication was recognized to be the best approach in terms of yield, while the microwave method was the fastest one. Selectivity varied from 60 to 90% depending the reaction media and promotion method.
[References]
  1. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  2. Yi YB, Ha MG, Lee JW, Chung CH, Korean J. Chem. Eng., 30(7), 1429, 2013
  3. Esther J, Sukla LB, Pradhan N, Panda S, Korean J. Chem. Eng., 32(1), 1, 2015
  4. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143, 2015
  5. Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ, Korean J. Chem. Eng., 32(10), 1945, 2015
  6. Gandini A, in: Loos K (Ed.), Biocatalysis in polymer chemistry, Wiley, n.d., pp. 1-34.
  7. Mulder G, J. Prakt. Chem., 21, 203, 1840
  8. Dull G, Chem Zeit, 19, 1003, 1895
  9. Kiermayer J, Chem. Appar., 19, 1004, 1895
  10. Ribeiro DMB, Ritter M, Souza AO, Freitag R, Farias MD, Flores AFC, Souto A, Lencina CL, Pereira CMP, Ultrason. Sonochem., 20, 99, 2013
  11. Agirrezabal-Telleria I, Gandarias I, Arias PL, Catal. Today, 234, 42, 2014
  12. Teong SP, Yi G, Zhang Y, Green Chem., 16, 2015, 2014
  13. Dashtban M, Gilbert A, Fatehi P, RSC Adv., 4, 2037, 2014
  14. Atanda L, Mukundan S, Shrotri A, Ma Q, Beltramini J, ChemCatChem, 7, 781, 2015
  15. Jain A, Shore AM, Jonnalagadda SC, Ramanujachary KV, Mugweru A, Appl. Catal. A: Gen., 489, 72, 2015
  16. Wang T, Nolte MW, Shanks BH, Green Chem., 16, 548, 2014
  17. Rodrigues FA, Guirardello R, Chem. Eng. J., 37, 475, 2014
  18. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ, Bioresour. Technol., 101(16), 6291, 2010
  19. Liu B, Ren Y, Zhang Z, Green Chem., 17, 1610, 2015
  20. Ma H, Wang FR, Yu YH, Wang LF, Li XH, Ind. Eng. Chem. Res., 54(10), 2657, 2015
  21. Zhang M, Tong X, Ma R, Li Y, Catal. Today, 6, 2015
  22. Noma R, Nakajima K, Kamata K, Kitano M, Hayashi S, Hara M, J. Phys. Chem. C, 119, 17117, 2015
  23. Kuster BFM, 42, 314 (1990).
  24. Hansen TS, Woodley JM, Riisager A, Carbohydr. Polym., 344, 2568, 2009
  25. Christian TJ, Manley-Harris M, Field RJ, Parker BA, J. Agric. Food Chem., 48, 1823, 2000
  26. Kotadia DA, Soni SS, Catal. Sci. Technol., 3, 469, 2013
  27. Hu L, Zhao G, Tang X, Wu Z, Xu JX, Lin L, Liu SJ, Bioresour. Technol., 148, 501, 2013
  28. Zhou L, He Y, Ma Z, Liang R, Wu T, Wu Y, Carbohydr. Polym., 117, 694, 2015
  29. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930, 2010
  30. Wang S, Du Y, Zhang P, Cheng X, Qu Y, Korean J. Chem. Eng., 31(12), 2286, 2014
  31. Wang S, Du Y, Zhang W, Cheng X, Wang J, Korean J. Chem. Eng., 31(10), 1786, 2014
  32. Ramli NAS, Amin NAS, J. Mol. Catal. A-Chem., 407, 113, 2015
  33. Brown DW, Floyd AJ, Kinsman RG, Ali Y, J. Chem. Technol. Biotechnol., 32, 920, 1982
  34. Qi X, Guo H, Li L, Smith RL, ChemSusChem, 5, 2215, 2012
  35. Zhang J, Weitz E, ACS Catal., 2, 1211, 2012
  36. Lacerda VD, Lopez-Sotelo JB, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M, Navas-Gracia LM, Martin-Ramos P, Perez-Lebena E, Martin-Gil J, Bioresour. Technol., 180, 88, 2015
  37. Qi X, Watanabe M, Aida T, Smith RL, Green Chem., 11, 1327, 2009
  38. Guo F, Fang Z, Zhou TJ, Bioresour. Technol., 112, 313, 2012
  39. Zhou X, Zhang Z, Liu B, Xu Z, Deng K, Carbohydr. Res., 375, 68, 2013
  40. Saha B, Abu-omar MM, Green Chem., 16, 24, 2014
  41. Roman-Leshkov Y, Dumesic JA, Top. Catal., 52, 297, 2009
  42. Lorenz LJ, Modern Methods of Pharmaceutical Analysis, Second Ed., CRC Press, Florida (2000).
  43. Tong X, Li Y, ChemSusChem, 3, 350, 2010
  44. Jiang N, Qi W, Huang R, Wang M, He Z, J. Chem. Technol. Biotechnol., 89, 56, 2013
  45. Klinpratoom B, Ontanee A, Ruangviriyachai C, Korean J. Chem. Eng., 32(3), 413, 2015
  46. Van Dam HE, Starch-Starke, 38, 95, 1986
  47. Wang F, Wu HZ, Liu CL, Yang RZ, Dong WS, Carbohydr. Res., 368, 78, 2013
  48. Gollnick K, Griesbeck A, Tetrahedron, 41, 2057, 1985
  49. Lee GCM, Syage ET, Harcourt D, Holmes JM, Garst ME, J. Org. Chem., 56, 7007, 1991
  50. Montagnon T, Tofi M, Vassilikogiannakis G, Acc. Chem. Res., 41, 1001, 2008
  51. Antal MJ, Mok WSL, Richards GN, Carbohydr. Res., 199, 91, 1990
  52. Li Y, Liu H, Song CH, Gu XM, Li HM, Zhu WS, Yin S, Han CR, Bioresour. Technol., 133, 347, 2013