Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1917-1921, 2016
Bulk phase behavior of tetra-n-butylammonium bromide hydrates formed with carbon dioxide or methane gas
We report the bulk phase behavior of ionic clathrate hydrates of tetra-n-butylammonium bromide (TBAB) formed with a common guest substance: CO2 or CH4. We formed the bulk samples by a classical mixing reactor for gas hydrates, and measured them by the powder X-ray diffraction (PXRD). PXRD patterns of the TBAB+(CO2 or CH4) hydrates formed with 0.32 of TBAB mass fraction in the aqueous phase were obtained. They are consistent with the orthorhombic hydrate (Shimada et al., Acta Crystallogr. 2005; Muromachi et al., Chem. Commun. 2014), but not identical with the other stable phase, i.e., the tetragonal TBAB hydrate (Rodionova et al., J. Phys. Chem. B 2013). When the aqueous solutions are under the substantial pressure of CO2 or CH4 gas, TBAB is likely to form the orthorhombic Pmma and/or Imma phases. A question for the bulk orthorhombic TBAB hydrate phase about the scarce gas incorporation is newly proposed.
[References]
  1. Chapoy A, Anderson R, Tohidi B, J. Am. Chem. Soc., 129(4), 746, 2007
  2. Arjmandi M, Chapoy A, Tohidi B, J. Chem. Eng. Data, 52(6), 2153, 2007
  3. Lee S, Park S, Lee Y, Lee J, Lee H, Seo Y, Langmuir, 27(17), 10597, 2011
  4. Zhong DL, Englezos P, Energy Fuels, 26(4), 2098, 2012
  5. Ye N, Zhang P, J. Chem. Eng. Data, 57(5), 1557, 2012
  6. Muromachi S, Hashimoto H, Maekawa T, Takeya S, Yamamoto Y, Fluid Phase Equilib., 413, 249, 2016
  7. Babu P, Chin WI, Kumar R, Linga P, Ind. Eng. Chem. Res., 53(12), 4878, 2014
  8. Jeffrey GA, in Inclusion Compounds, (Eds. Atwood JL, Davies JED, MacNicol DD), Academic Press: London, Vol. 1, Chapter 5 (1984).
  9. Davidson DW, in Water. A Comprehensive Treatise, (Ed. Franks F), Plenum Press, New York, NY (1973).
  10. Dyadin YA, Udachin KA, J. Struct. Chem., 28, 75, 1987
  11. Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 61, o65, 2005
  12. Muromachi S, Takeya S, Yamamoto Y, Ohmura R, CrystEngComm, 16, 2056, 2014
  13. Gaponenko LA, Solodovnikov SF, Dyadin YA, Aladko LS, Polyanskaya TM, J. Struct. Chem., 25, 175, 1984
  14. Kobori T, Muromachi S, Yamasaki T, Takeya S, Yamamoto Y, Alavi S, Ohmura R, Cryst. Growth Des., 15, 3862, 2015
  15. Oyama H, Shimada W, Ebinuma T, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Fluid Phase Equilib., 234(1-2), 131, 2005
  16. Rodionova TV, Komarov VY, Villevald GV, Karpova TD, Kuratieva NV, Manakov AY, J. Phys. Chem. B, 117, 10677, 2013
  17. Jin Y, Nagao J, J. Phys. Chem. C, 117, 6924, 2013
  18. Muromachi S, Udachin KA, Shin K, Alavi S, Moudrakovski IL, Ohmura R, Ripmeester JA, Chem. Commun., 50, 11476, 2014
  19. Muromachi S, Kida M, Takeya S, Yamamoto Y, Ohmura R, Can. J. Chem., 93, 954, 2015
  20. Izumi F, Momma K, Solid State Phenom., 130, 15, 2007
  21. Adisasmito S, Frank RJ, Sloan ED, J. Chem. Eng. Data, 36, 68, 1991
  22. Ye N, Zhang P, Liu QS, Ind. Eng. Chem. Res., 53(24), 10249, 2014
  23. Sangwai JS, Oellrich L, Fluid Phase Equilib., 367, 95, 2014