Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1865-1871, 2016
Bio-electrochemical conversion of atmospheric N2 to ammonium using free-living diazotrophs
The effects of electrochemical reducing power on enrichment, growth, and ammonium production of freeliving diazotrophs from rhizosphere soil were evaluated. Soil bacteria were cultivated in a conventional bioreactor (CBR) and an electrochemical bioreactor (EBR), both containing a neutral red-modified graphite felt (NR-GF) cathode and a platinum anode, but with electricity charged to the EBR only. Temperature gradient gel electrophoresis identified 21 species from rhizosphere soil, and 17 and seven species from the CBR and EBR, respectively, after 40 days of incubation. Six species from the CBR and five species from the EBR were diazotrophs. The bacterial community biomass and the ammonium content in the bacterial culture were, respectively, 1.6 and 2 times higher in the EBR than in the CBR. These results indicate that the electrochemical reducing power generated from the NR-GF may be a driving force in the activation of enrichment, growth, and N2-fixing metabolism of diazotrophs.
[References]
  1. Boyd ES, Lange RK, Mitchell AC, Having JR, Hamilton TL, Lafreniere MJ, Shock EL, Peters JW, Skidmore M, Appl. Environ. Microbiol., 77, 4778, 2011
  2. Bebout BM, Fitzpatrick MW, Paerl HW, Appl. Environ. Microbiol., 59, 1495, 1993
  3. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J, Appl. Environ. Microbiol., 68, 1854, 2002
  4. Lupwayi NZ, Rice WA, Clayton GW, Soil Biol. Biochem., 30, 1733, 1998
  5. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR, Appl. Environ. Microbiol., 70, 973, 2004
  6. De Luca TH, Drinkwater LE, Wiefling BA, DeNicola DM, Biol. Fertil. Soils, 23, 140, 1996
  7. Kahindi JHP, Woomer P, George T, Moreira FMD, Karanja NK, Giller KE, Appl. Soil Ecol., 6, 55, 1997
  8. Hardy RWF, D’Eustachio AJ, Biochem. Biophys. Res. Commun., 15, 314, 1964
  9. Kremers SPJ, de Bruijn GJ, Visscher TLS, van Mechelen W, de Vries NK, Brug J, Int. J. Behav. Nutr. Phys. Acta, 3, 9, 2006
  10. Park DH, Zeikus JG, J. Bacteriol., 181, 2403, 1999
  11. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG, Appl. Environ. Microbiol., 65, 2912, 1999
  12. Kanamori K, Weiss RL, Roberts JD, J. Bacteriol., 172, 1962, 1990
  13. Hardy RWF, Knight E, Biochim. Biophys. Acta, 122, 520, 1966
  14. Kang HS, Na BK, Park DH, Biotechnol. Lett., 29(8), 1277, 2007
  15. Jeon BY, Jung IL, Park DH, J. Microbiol. Biotechnol., 21, 90, 2011
  16. Hosseini SM, Hamidi A, Moghadassi A, Madaeni SS, Korean J. Chem. Eng., 32(3), 429, 2015
  17. Cheung PY, Kinkle BK, Appl. Environ. Microbiol., 67, 2222, 2001
  18. Orr CH, James A, Leifert C, Cooper JM, Cummings SP, Appl. Environ. Microbiol., 77, 911, 2010
  19. Yang CH, Crowley DE, Appl. Environ. Microbiol., 66, 345, 2000
  20. Holl CM, Montoya JP, J. Phycol., 41, 1178, 2005
  21. Christiansen-Weniger C, van Ven JA, Biol. Fertil. Soils, 12, 100, 1991
  22. Jeon BY, Jung IL, Park DH, J. Environ. Protect., 3, 55, 2012
  23. Agawin NAE, Limnol. Oceanogr., 52, 2233, 2007
  24. Oritiz-Marquez JCF, Nascimento MD, de los Angeles Dublan M, Curatti L, Appl. Environ. Microbiol., 78, 2345, 2012
  25. Chen GW, Choi SJ, Cha JH, Lee TH, Kim CW, Korean J. Chem. Eng., 27(5), 1513, 2010
  26. Shanmugam KT, Valentine RC, Proc. Natl. Acad. Sci. USA, 72, 136, 1975
  27. Colnaghi R, Green A, He L, Rudnick P, Kennedy C, Plant Soil, 194, 145, 1997
  28. Hongo M, Iwahara M, Agric. Biol. Chem., 43, 2075, 1979
  29. Gregory KB, Bond DR, Lovely DR, Environ. Microbiol., 6, 596, 2004
  30. Rabaey K, Girguis P, Nielsen LK, Curr. Opin. Biotechnol., 22, 1, 2011