Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1823-1830, 2016
Catalytic oxidation and capture of elemental mercury from simulated flue gas using Mn-doped titanium dioxide
Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X.ray diffraction (XRD) and X.ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 ℃, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.
[References]
  1. Wan Q, Duan L, He KB, Li JH, Chem. Eng. J., 170(2-3), 512, 2011
  2. Wu Y, Wang SX, Streets DG, Hao JM, Chan M, Jiang JK, Environ. Sci. Technol., 40, 5312, 2006
  3. Milford JB, Pienciak A, Environ. Sci. Technol., 43, 2669, 2009
  4. U.S. Environmental Protection Agency. Air Toxics Standards forUtilities, http://www.epa.gov/airquality/powerplanttoxics/actions.html (Accessed on June 2012).
  5. Tan ZQ, Sun LS, Xiang J, Zeng HC, Liu ZH, Hu S, Qiu JR, Carbon, 50, 362, 2012
  6. Tang TM, Xu JA, Lu RJ, Wo JJ, Xu XH, Fuel, 89(12), 3613, 2010
  7. Yang H, Pan WP, J. Environ. Sci., 19(2), 181, 2007
  8. Granite EJ, Pennline HW, Hargis RA, Ind. Eng. Chem. Res., 39(4), 1020, 2000
  9. Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP, Environ. Sci. Technol., 44, 426, 2009
  10. He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, Energy Fuels, 27(8), 4832, 2013
  11. Yang SJ, Yan NQ, Guo YF, Wu DQ, He HP, Qu Z, Li JF, Zhou Q, Jia JP, Environ. Sci. Technol., 45, 1540, 2011
  12. Xie JK, Yan NQ, Yang SJ, Qu Z, Chen WM, Zhang WQ, Li KH, Liu P, Jia JJS, Res. Chem. Intermed., 38, 2511, 2012
  13. Ji L, Sreekanth PM, Smirniotis PG, Thiel SW, Pinto NG, Energy Fuels, 22(4), 2299, 2008
  14. Granite EJ, Pennline HW, Hargis RA, Ind. Eng. Chem. Res., 39(4), 1020, 2000
  15. Li Y, Murphy P, Wua CY, Fuel Process. Technol., 89(6), 567, 2008
  16. Liu H, Yu XQ, Yang HM, Chem. Eng. J., 243, 465, 2014
  17. Gionco C, Paganini MC, Agnoli S, Reeder AE, Giamello EJ, J. Mater. Chem. A, 1, 10918, 2013
  18. Yu JG, Ran JR, Energy Environ. Sci., 4, 1364, 2011
  19. Kim SS, Hong SC, J. Air Waste Manage., 62, 362, 2012
  20. Park E, Le H, Chin S, Kim J, Bae GN, Jurng J, J. Porous Mat., 19, 877, 2012
  21. Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W, Environ. Sci. Technol., 39, 1269, 2005
  22. Kamata H, Ueno S, Naito T, Yamaguchi A, Ito S, Catal. Commun., 9, 2441, 2008
  23. Qiao SH, Chen J, Li JF, Qu Z, Liu P, Yan NQ, Jia JQ, Ind. Eng. Chem. Res., 48(7), 3317, 2009
  24. Kong FH, Qiu JR, Liu H, Zhao R, Ai ZH, J. Environ. Sci., 23, 699, 2011
  25. Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, Chem. Eng. J., 219, 319, 2013
  26. He J, Reddy GK, Thiel SW, Smirniotis PG, Pinto NG, J. Phys. Chem. C, 115, 24300, 2011
  27. Norton GA, Yang HQ, Brown RC, Laudal DL, Dunham GE, Erjavec J, Fuel, 82(2), 107, 2003
  28. Li HL, Wu CY, Li Y, Li LQ, Zhao YC, Zhang JY, J. Hazard. Mater., 243, 117, 2012
  29. Wen XY, Li CT, Fan XP, Gao HL, Zhang W, Chen L, Zeng GM, Zhao YP, Energy Fuels, 25(7), 2939, 2011
  30. Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ, Environ. Sci. Technol., 42, 5304, 2008
  31. Li HL, Li Y, Wu CY, Zhang JY, Chem. Eng. J., 169(1-3), 186, 2011
  32. Li HL, Li Y, Wu CY, Zhang JY, Chem. Eng. J., 169(1-3), 186, 2011
  33. Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP, Environ. Sci. Technol., 44, 426, 2010
  34. Hu CX, Zhou JS, Luo ZY, Cen KF, Energy Fuels, 25, 154, 2010
  35. Wu ZB, Jin RB, Wang HQ, Liu Y, Catal. Commun., 10, 935, 2009
  36. Kim MH, Ham SW, Lee JB, Appl. Catal. B: Environ., 99(1-2), 272, 2010
  37. Xu WQ, He H, Yu YB, J. Phys. Chem. C, 113, 4426, 2009
  38. Li HL, Wu CY, Li Y, Zhang JY, Environ. Sci. Technol., 45, 7394, 2011
  39. Zhou JS, Hou WH, Qi P, Gao X, Luo ZY, Cen KF, Environ. Sci. Technol., 47, 10056, 2013
  40. Olson ES, Thompson JS, Pavlish JH, Prepr. ACS Div. Fuel Chem., 45, 560, 2000
  41. Guo S, Yang J, Liu Z, Xiao Y, Korean J. Chem. Eng., 26(2), 560, 2009