Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1706-1711, 2016
Tuning magnetism via selective injection into ice-like clathrate hydrates
Clathrate hydrates exhibit unique intermolecular interactions between host-guest and guest-guest molecules because they have 3-dimensional superstructures consisting of the sublattices created by hydrogen-bonded water molecules that form cage-like frameworks in which guest molecules can be incorporated. Lattice engineering or molecular engineering using a selective injection of specific guest molecules into these sublattices can be exploited to tune the physicochemical properties of guest molecules or to create new functional materials. Here, we report distinctive intermolecular behavior of oxygen molecules that are selectively inserted in a structure-II type superstructure consisting of a tetrahedral sublattice by the small 512 water cages and a diamond-like sublattice by the large 51264 cages. Pure O2 clathrate hydrate and binary THF+O2 clathrate hydrate were synthesized, and their magnetism and heat capacity were measured at low temperature conditions. These results strongly suggest that the magnetic property of the oxygen molecule is largely varied with the formation of a 3-dimensional superstructure by the injection of O2 into the water frameworks.
[References]
  1. Pauling L, Marsh RE, Proc. Natl. Acad. Sci. U.S.A., 38, 112, 1952
  2. Atwood JL, Davies JED, MacNicol DD, Inclusion Compounds, Vol. 1, Academic Press Inc., London (1984).
  3. Sloan ED, Koh C, Clathrate Hydrates of Natural Gases, CRC Press, New York, 3rd Ed. (2007).
  4. Lee H, Lee JW, Kim DY, Park J, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature, 434, 743, 2005
  5. Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Proc. Natl. Acad. Sci. U.S.A., 103, 12690, 2006
  6. Park Y, Dho J, Seol J, Yeon SH, Cha M, Jeong YH, Seo Y, Lee H, J. Am. Chem. Soc., 131(16), 5736, 2009
  7. Bramwell ST, Gingras MJP, Science, 294, 1495, 2001
  8. Pauling L, J. Am. Chem. Soc., 57, 2680, 1935
  9. Snyder J, Slusky JS, Cava RJ, Shiffer P, Nature, 413, 48, 2001
  10. Wang RF, Nisoli C, Freitas RS, Li J, McConville W, Cooley BJ, Lund MS, Samarth N, Leighton C, Crespi VH, Schiffer P, Nature, 439, 303, 2006
  11. Fischer KH, Hertz JA, Spin glasses, Cambridge University Press (1993).
  12. Harris MJ, Bramwell ST, McMorrow DF, Zeiske T, Godfrey KW, Phys. Rev. Lett., 79, 2554, 1997
  13. Bansal C, Kawanaka H, Bando H, Nishihara Y, Phys. Rev. B, 66, 052406, 2002
  14. Gingras MJP, den Hertog BC, Faucher M, Gardner JS, Dunsinger SR, Chang LJ, Gaulin BD, Raju NP, Greedan JE, Phys. Rev. B, 62, 6496, 2000
  15. Freiman YA, Jodi JJ, Phys. Rep., 401, 1, 2004
  16. Kitaura R, Kitagawa S, Kubota Y, Kobayashi TC, Kindo K, Mita Y, Matsuo A, Kobayashi M, Chang HC, Ozawa TC, Suzuki M, Sakata M, Takata M, Science, 298, 2358, 2002
  17. Oda A, Kawakami T, Takeda S, Mori W, Matsushita MM, Izuoka A, Sugawara T, Yamaguchi K, Mol. Cryst. Liq. Cryst., 306, 151, 1997
  18. Kobayashi TC, Matsuo A, Suzuki M, Kondo K, Kitaura R, Matsuda R, Kitagawa S, Prog. Theor. Phys. Suppl., 159, 271, 2005
  19. Takamizawa S, Nakata E, Akatsuka T, Angew. Chem.-Int. Edit., 45, 2216, 2006
  20. Bussery B, Wormer PES, J. Chem. Phys., 99, 1230, 1993
  21. Evans DF, Richards RE, Nature, 169, 246, 1952
  22. Kobler U, Marx R, Phys. Rev. B, 35, 9809, 1897
  23. Ramirez AP, Hayashi A, Cava RJ, Siddharthan R, Shastry BS, Nature, 399(6734), 333, 1999