Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1681-1691, 2016
Mathematical modeling of supercritical carbon dioxide extraction of methyl eugenol from tuberose flowers
Methyl eugenol-rich extracts from dried tuberose flowers (Polianthes tuberosa L.) of Calcutta single variety were obtained using supercritical carbon dioxide (SC-CO2) extraction. The optimized conditions for highest yield of methyl eugenol were 50 ℃, 300 bar, 135 min with 1 L min-1 flow rate of gaseous CO2. Solubilities of methyl eugenol under different SC-CO2 extraction conditions were evaluated by Hildebrand solubility parameter and Chrastil equation. The extraction curve of methyl eugenol followed plug flow model. Steady state extraction occurred up to 100min, followed by unsteady state. Release of methyl eugenol from tuberose flowers followed first-order kinetics (Peppas model) and non-Fickian diffusion. Packed bed characterization was carried out using dimensionless numbers of mass transfer, considering steady and unsteady states of extraction. These findings could be used in the development of the pilot plant and commercial scale extraction of methyl eugenol from floral matrices.
[References]
  1. Ghosh PK, Bhattacharjee P, Das S, Int. J. Pharm. Sci. Res., 5, 1279, 2014
  2. Anand AK, Mohan M, Haider SZ, Sharma A, Int. J. Pharm. Sci., 3, 223, 2011
  3. Nabiha B, Abdelfateh E, Faten K, Paul WJ, Michel M, Moncef CM, J. Essent. Oil Bear. Pl., 12, 694, 2009
  4. Joshi RK, Indian J. Pharm. Sci., 75, 457, 2013
  5. Ayci F, Aydinli M, Bozdemir OA, Tutas M, Flavour Frag. J., 20, 481, 2005
  6. N.T. P. Reports on Carcinogens, 11, 153, PMID: 15326674 (2002).
  7. Mukhopadhyay M, Fundamentals of supercritical fluids and phase equilibria, Natural Extracts using Supercritical Carbon dioxide, CRC Press, Florida, USA (2000).
  8. Zizovic I, Stamenic M, Orlovic A, Skala D, J. Supercrit. Fluids, 39(3), 338, 2007
  9. Ghoreishi SM, Bataghva E, Korean J. Chem. Eng., 31(9), 1632, 2014
  10. Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M, Ind. Eng. Chem. Res., 38(8), 3069, 1999
  11. A.O.A.C.: AOAC method 967.19, in: Helrich K, Ed., Official Methods of Analysis of AOAC International, 15th Ed., AOAC International, Arlington, VA, USA (1990).
  12. Gomes PB, Mata VG, Rodrigues AE, J. Supercrit. Fluids, 41(1), 50, 2007
  13. McCabe WL, Smith JC, Harriot P, Flow past immersed objects, Unit Operations of Chemical Engineering, 7th Ed., McGraw Hill, Ohio, USA (2005).
  14. Chatterjee D, Bhattacharjee P, Food Bioprocess Technol., 6, 2587, 2013
  15. Silva GF, Gamarra FMC, Oliveira AL, Cabral FA, Braz. J. Chem. Eng., 25, 419, 2008
  16. Bhattacharjee P, Chatterjee D, Singhal RS, Food Bioprocess Technol., 5, 2506, 2012
  17. Hildebrand JH, Scott RL, The Solubility of Non electrolytes, 3rd Ed., Dover, New York, USA (1950).
  18. Fedors RF, Polym. Eng. Sci., 14, 147, 1974
  19. Sajilata MG, Bule MV, Chavan P, Singhal RS, Kamat MY, Sep. Purif. Technol., 71(2), 173, 2010
  20. King JW, LWT-Food Science Technol., 28, 190, 1995
  21. Reid RJ, Prausnitz JM, Poling BE, Pure component constants, The Properties of Gases and Liquids, 4th Ed., Mc-Graw-Hill, New York, USA (1987).
  22. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  23. Nejad SJ, Abolghasemi H, Moosavian MA, Maragheh MG, Chem. Eng. Res. Des., 88(7A), 893, 2010
  24. Ismadji S, Bhatia SK, J. Supercrit. Fluids, 27(1), 1, 2003
  25. Catchpole OJ, Vonkamp JC, Ind. Eng. Chem. Res., 36(9), 3762, 1997
  26. Westerman D, Santos RCD, Bosley JA, Rogers JS, Al-Duri B, J. Supercrit. Fluids, 37(1), 38, 2006
  27. Song S, Wang Z, Qian Y, Zhang L, Luo E, J. Agric. Food Chem., 60, 4388, 2012
  28. Sovova H, Komers R, Kucera J, Jez J, Chem. Eng. Sci., 49(15), 2499, 1994
  29. Reverchon E, J. Supercrit. Fluids, 10(1), 1, 1997
  30. Martin A, Cocero MJ, J. Supercrit. Fluids, 39(3), 304, 2007
  31. Tan CS, Liang SK, Liou DC, Chem. Eng. J., 38, 17, 1988
  32. Kotnik P, Skerget M, Knez Z, J. Supercrit. Fluids, 43(2), 192, 2007
  33. Hong IK, RHO SW, LEE KS, LEE WH, YOO KP, Korean J. Chem. Eng., 7(1), 40, 1990
  34. Montgomery DC, Experiments with a single factor: the analysis of variance, Design and Analysis of Experiments, John Wiley and Sons, New York, USA (2001).
  35. Montgomery DC, Response surface methods and other approaches to process optimization, Design and Analysis of Experiments, John Wiley and Sons New York, USA (2001).
  36. Ge Y, Ni Y, Yan H, Chen Y, Cai T, J. Food Sci., 67, 239, 2002
  37. Sovova H, J. Supercrit. Fluids, 66, 73, 2012
  38. Cseke LJ, Kaufman PB, How and why these compounds are synthesized by plants, Natural Products from Plants. In: Cseke LJ, Lu CR, Kornfield A, Kaufman PB, Kirakosyan A, Eds., CRC Press, Florida, USA (2006).
  39. Stamenic M, Zizovic I, Orlovic A, Skala D, J. Supercrit. Fluids, 46(3), 285, 2008
  40. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA, Int. J. Pharm., 15, 25, 1983
  41. Paulaitis ME, Krukonis VJ, Kurnik Y, Reid RC, Rev. Chem. Eng., 1, 179, 1983
  42. Stuber F, Vazquez AM, Larrayoz MA, Recasens F, Ind. Eng. Chem. Res., 35(10), 3618, 1996
  43. Norhuda I, Omar AKM, Int. J. Chem. Bio. Eng., 2, 10, 2009